These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26871149)

  • 1. Richtmyer-Meshkov instability of a three-dimensional SF_{6}-air interface with a minimum-surface feature.
    Luo X; Guan B; Si T; Zhai Z; Wang X
    Phys Rev E; 2016 Jan; 93(1):013101. PubMed ID: 26871149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer-Meshkov instabilities.
    Luo X; Guan B; Zhai Z; Si T
    Phys Rev E; 2016 Feb; 93(2):023110. PubMed ID: 26986416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave.
    Zou L; Liu J; Liao S; Zheng X; Zhai Z; Luo X
    Phys Rev E; 2017 Jan; 95(1-1):013107. PubMed ID: 28208332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability.
    Jourdan G; Houas L
    Phys Rev Lett; 2005 Nov; 95(20):204502. PubMed ID: 16384063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of a Richtmyer-Meshkov Instability at an Air-SF_{6} Interface in a Semiannular Shock Tube.
    Ding J; Si T; Yang J; Lu X; Zhai Z; Luo X
    Phys Rev Lett; 2017 Jul; 119(1):014501. PubMed ID: 28731767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows.
    Bai JS; Liu JH; Wang T; Zou LY; Li P; Tan DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056302. PubMed ID: 20866317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.
    Rikanati A; Oron D; Sadot O; Shvarts D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026307. PubMed ID: 12636800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations of three-dimensional Richtmyer-Meshkov instability on a membraneless gas bubble.
    Chu HY; Chen DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051002. PubMed ID: 23767479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.
    Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Richtmyer-Meshkov instability in elastic-plastic media.
    Piriz AR; López Cela JJ; Tahir NA; Hoffmann DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056401. PubMed ID: 19113220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K; Fukuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected.
    Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056303. PubMed ID: 11415002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock.
    Bai JS; Wang B; Wang T; Liu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066319. PubMed ID: 23368050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws.
    López Ortega A; Lombardini M; Pullin DI; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033018. PubMed ID: 24730948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows.
    Xiao JX; Bai JS; Wang T
    Phys Rev E; 2016 Jul; 94(1-1):013112. PubMed ID: 27575222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of Richtmyer-Meshkov instability in finite thickness fluid layers with reshock.
    Li L; Jin T; Zou L; Luo K; Fan J
    Phys Rev E; 2024 May; 109(5-2):055105. PubMed ID: 38907401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of a strongly shocked gas bubble.
    Ranjan D; Anderson M; Oakley J; Bonazza R
    Phys Rev Lett; 2005 May; 94(18):184507. PubMed ID: 15904378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066303. PubMed ID: 17280144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.