These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26871159)

  • 1. Particle stresses in dilute, polydisperse, two-way coupled turbulent flows.
    Richter DH; Garcia O; Astephen C
    Phys Rev E; 2016 Jan; 93(1):013111. PubMed ID: 26871159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers.
    Shotorban B; Balachandar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic Modeling of Swirling Binary Mixture Gas-Particle Flows Using a Second-Order-Moment Turbulence Model.
    Liu Y; Chen Z; Zhang Y; Zhou L
    ACS Omega; 2020 Dec; 5(49):31490-31501. PubMed ID: 33344800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and Breakup of Particles in a Shear Flow.
    Serra T; Colomer J; Casamitjana X
    J Colloid Interface Sci; 1997 Mar; 187(2):466-73. PubMed ID: 9073422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying turbulence-induced segregation of inertial particles.
    Calzavarini E; Cencini M; Lohse D; Toschi F;
    Phys Rev Lett; 2008 Aug; 101(8):084504. PubMed ID: 18764623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact regularized point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime.
    Battista F; Mollicone JP; Gualtieri P; Messina R; Casciola CM
    J Fluid Mech; 2019 Nov; 878():420-444. PubMed ID: 32879533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments of turbulent emulsions in Taylor-Couette flow.
    Yi L; Wang C; Huisman SG; Sun C
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220129. PubMed ID: 36709776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-time motion of Brownian particles in a shear flow.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic transport of particles in straining flows.
    Swailes DC; Ammar Y; Reeks MW; Drossinos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036305. PubMed ID: 19392047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct numerical simulation of a near-field particle-laden plane turbulent jet.
    Fan J; Luo K; Ha MY; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026303. PubMed ID: 15447584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer.
    Fan J; Luo K; Zheng Y; Jin H; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036309. PubMed ID: 14524892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):116. PubMed ID: 30269258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape.
    Lundell F; Carlsson A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016323. PubMed ID: 20365476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional inclined chute flows: transverse motion and segregation.
    Berton G; Delannay R; Richard P; Taberlet N; Valance A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051303. PubMed ID: 14682794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravity-driven enhancement of heavy particle clustering in turbulent flow.
    Bec J; Homann H; Ray SS
    Phys Rev Lett; 2014 May; 112(18):184501. PubMed ID: 24856699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect.
    Ducasse L; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066312. PubMed ID: 20365272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of turbulent energy dissipation rate of fluid flow in the vicinity of dispersed phase boundary using spatiotemporal tree model.
    Sikiƶ P; Jalali P
    Chaos; 2014 Dec; 24(4):043139. PubMed ID: 25554059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.