These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26871162)

  • 1. Grouping behavior of coaxial settling particles in a narrow channel.
    Nie D; Lin J; Chen R
    Phys Rev E; 2016 Jan; 93(1):013114. PubMed ID: 26871162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels.
    Başağaoğlu H; Meakin P; Succi S; Redden GR; Ginn TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031405. PubMed ID: 18517379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles.
    Zhang P; Galindo-Torres SA; Tang H; Jin G; Scheuermann A; Li L
    Phys Rev E; 2016 Jun; 93(6):062612. PubMed ID: 27415325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of particles settling in shear-thinning fluids. Part 2. Three-particle aggregation.
    Daugan S; Talini L; Herzhaft B; Allain C
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):55-62. PubMed ID: 15010930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.
    Liu C; Hu G; Jiang X; Sun J
    Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method.
    Huang H; Wu Y; Lu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046305. PubMed ID: 23214675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discontinuity in the sedimentation system with two particles having different densities in a vertical channel.
    Nie D; Lin J
    Phys Rev E; 2019 May; 99(5-1):053112. PubMed ID: 31212461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow of power-law fluids in self-affine fracture channels.
    Yan Y; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036315. PubMed ID: 18517519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback control of inertial microfluidics using axial control forces.
    Prohm C; Stark H
    Lab Chip; 2014 Jun; 14(12):2115-23. PubMed ID: 24811136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Settling mode of a bottom-heavy squirmer in a narrow vessel.
    Tingting Q; Jianzhong L; Zhenyu O; Jue Z
    Soft Matter; 2023 Jan; 19(4):652-669. PubMed ID: 36597923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.
    Amiri Delouei A; Nazari M; Kayhani MH; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-forcing fictitious domain method for simulating non-Brownian active particles.
    Lin Z; Gao T
    Phys Rev E; 2019 Jul; 100(1-1):013304. PubMed ID: 31499789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method.
    Khali S; Nebbali R; Ameziani DE; Bouhadef K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053002. PubMed ID: 23767615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: coughing and choking.
    Başağaoğlu H; Succi S
    J Chem Phys; 2010 Apr; 132(13):134111. PubMed ID: 20387925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between two unequal particles at intermediate Reynolds numbers: A pattern of horizontal oscillatory motion.
    Nie D; Guan G; Lin J
    Phys Rev E; 2021 Jan; 103(1-1):013105. PubMed ID: 33601625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulations of the behaviour of a drop in a square pipe flow using the two-phase lattice Boltzmann method.
    Kataoka Y; Inamuro T
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2528-36. PubMed ID: 21576168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure and kinetic energy transport across the cavity mouth in resonating cavities.
    Bailey PR; Abbá A; Tordella D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013013. PubMed ID: 23410432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascading blockages in channel bundles.
    Barré C; Talbot J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052141. PubMed ID: 26651680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.