These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26871169)

  • 1. Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media.
    Jin C; Langston PA; Pavlovskaya GE; Hall MR; Rigby SP
    Phys Rev E; 2016 Jan; 93(1):013122. PubMed ID: 26871169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-scale statistics of flow and transport through porous media.
    Aramideh S; Vlachos PP; Ardekani AM
    Phys Rev E; 2018 Jul; 98(1-1):013104. PubMed ID: 30110739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between pore size and velocity probability distributions in stochastically generated porous media.
    Siena M; Riva M; Hyman JD; Winter CL; Guadagnini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013018. PubMed ID: 24580331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lagrangian statistical model for transport in highly heterogeneous velocity fields.
    Le Borgne T; Dentz M; Carrera J
    Phys Rev Lett; 2008 Aug; 101(9):090601. PubMed ID: 18851594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Geometry and Topology of 3D Stochastic Porous Media.
    Ioannidis MA; Chatzis I
    J Colloid Interface Sci; 2000 Sep; 229(2):323-334. PubMed ID: 10985811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media.
    Le Borgne T; Dentz M; Carrera J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026308. PubMed ID: 18850937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent effective medium-correlated random walk theory for the diffusion of fluid mixtures through porous media.
    Bonilla MR; Bhatia SK
    Langmuir; 2012 Jan; 28(1):517-33. PubMed ID: 22124253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat and mass transport in nonhomogeneous random velocity fields.
    Mauri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066306. PubMed ID: 14754314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of three-dimensional porous media using a single thin section.
    Tahmasebi P; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical studies of the transport behavior of a passive solute in a two-dimensional incompressible random flow field.
    Dentz M; Kinzelbach H; Attinger S; Kinzelbach W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046306. PubMed ID: 12786486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.
    Bijeljic B; Raeini A; Mostaghimi P; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013011. PubMed ID: 23410430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relations between Lagrangian models and synthetic random velocity fields.
    Olla P; Paradisi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046305. PubMed ID: 15600517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial Effects on Flow and Transport in Heterogeneous Porous Media.
    Nissan A; Berkowitz B
    Phys Rev Lett; 2018 Feb; 120(5):054504. PubMed ID: 29481162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern density function for reconstruction of three-dimensional porous media from a single two-dimensional image.
    Gao M; Teng Q; He X; Zuo C; Li Z
    Phys Rev E; 2016 Jan; 93(1):012140. PubMed ID: 26871056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-exponential velocity distributions in disordered porous media.
    Matyka M; Gołembiewski J; Koza Z
    Phys Rev E; 2016 Jan; 93(1):013110. PubMed ID: 26871158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous transport dependence on Péclet number, porous medium heterogeneity, and a temporally varying velocity field.
    Nissan A; Berkowitz B
    Phys Rev E; 2019 Mar; 99(3-1):033108. PubMed ID: 30999549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.
    Deng H; Dai Z; Wolfsberg AV; Ye M; Stauffer PH; Lu Z; Kwicklis E
    Chemosphere; 2013 Apr; 91(3):248-57. PubMed ID: 23260249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and validation of correlation lengths from interstitial velocity fields using diffusion-weighted MRI.
    Moser KW; Georgiadis JG
    Magn Reson Imaging; 2004 Feb; 22(2):257-68. PubMed ID: 15010119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.