These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26871170)

  • 1. Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis.
    Bradshaw J; Billingham J
    Phys Rev E; 2016 Jan; 93(1):013123. PubMed ID: 26871170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thick drops on a slowly oscillating substrate.
    Benilov ES; Cummins CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023013. PubMed ID: 24032930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin three-dimensional drops on a slowly oscillating substrate.
    Benilov ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066301. PubMed ID: 22304184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate.
    Karapetsas G; Sahu KC; Matar OK
    Langmuir; 2013 Jul; 29(28):8892-906. PubMed ID: 23786489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices.
    Schertzer MJ; Gubarenko SI; Ben-Mrad R; Sullivan PE
    Langmuir; 2010 Dec; 26(24):19230-8. PubMed ID: 21080633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.
    Koishi T; Yasuoka K; Fujikawa S; Zeng XC
    ACS Nano; 2011 Sep; 5(9):6834-42. PubMed ID: 21838303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Displacement of liquid droplets on a surface by a shearing air flow.
    Fan J; Wilson MC; Kapur N
    J Colloid Interface Sci; 2011 Apr; 356(1):286-92. PubMed ID: 21281938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.
    Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Droplet Dynamics on Contact Line Depinning in Shearing Gas Flow.
    Mortazavi M; Jung SY
    Langmuir; 2023 Aug; 39(30):10301-10311. PubMed ID: 37478170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.
    Dash S; Garimella SV
    Langmuir; 2013 Aug; 29(34):10785-95. PubMed ID: 23952149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number.
    Yang J; Ma X; Fei L; Zhang X; Luo KH; Shuai S
    J Colloid Interface Sci; 2020 Apr; 566():327-337. PubMed ID: 32014676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do liquid drops roll or slide on inclined surfaces?
    Thampi SP; Adhikari R; Govindarajan R
    Langmuir; 2013 Mar; 29(10):3339-46. PubMed ID: 23414059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient modelling of droplet dynamics on complex surfaces.
    Karapetsas G; Chamakos NT; Papathanasiou AG
    J Phys Condens Matter; 2016 Mar; 28(8):085101. PubMed ID: 26828706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method.
    Wang L; Huang HB; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013301. PubMed ID: 23410454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.