These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26871174)

  • 1. Self-similar propagation of Hermite-Gauss water-wave pulses.
    Fu S; Tsur Y; Zhou J; Shemer L; Arie A
    Phys Rev E; 2016 Jan; 93(1):013127. PubMed ID: 26871174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.
    Fu S; Tsur Y; Zhou J; Shemer L; Arie A
    Phys Rev Lett; 2015 Dec; 115(25):254501. PubMed ID: 26722925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation Dynamics of Airy Water-Wave Pulses.
    Fu S; Tsur Y; Zhou J; Shemer L; Arie A
    Phys Rev Lett; 2015 Jul; 115(3):034501. PubMed ID: 26230797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact solutions for linear propagation of chirped pulses using a chirped Gauss Hermite orthogonal basis.
    Lazaridis P; Debarge G; Gallion P
    Opt Lett; 1997 May; 22(10):685-7. PubMed ID: 18185628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic full-wave generalization of the real-argument Hermite-Gauss beam.
    Seshadri SR
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1162-70. PubMed ID: 20448784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-polarization of linearly polarized Hermite-Gauss laser beams.
    Conry J; Vyas R; Singh S
    J Opt Soc Am A Opt Image Sci Vis; 2012 Apr; 29(4):579-84. PubMed ID: 22472837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual source for a Hermite-Gauss beam.
    Seshadri SR
    Opt Lett; 2003 Apr; 28(8):595-7. PubMed ID: 12703911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear diffraction from high-order Hermite-Gauss beams.
    Kalinowski K; Shapira A; Libster-Hershko A; Arie A
    Opt Lett; 2015 Jan; 40(1):13-6. PubMed ID: 25531596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: Universality and diversity.
    Chen S; Yi L; Guo DS; Lu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016622. PubMed ID: 16090122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams.
    Prajapati C; Ranganathan D
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1377-82. PubMed ID: 22751403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain.
    Soloman Raju T; Panigrahi PK; Porsezian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046612. PubMed ID: 16383559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial properties and propagation dynamics of apodized Hermite-Gauss beams.
    Boumeddine OC; Bencheikh A; Chabou S
    Appl Opt; 2021 Apr; 60(11):3122-3127. PubMed ID: 33983210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.
    Borrelli R; Peluso A
    J Chem Phys; 2016 Mar; 144(11):114102. PubMed ID: 27004857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows.
    Meng J; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036704. PubMed ID: 21517622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the traveling waves composing the Hermite-Gauss beams that make them structured wavefields?
    Ugalde-Ontiveros JA; Jaimes-Nájera A; Luo S; Gómez-Correa JE; Pu J; Chávez-Cerda S
    Opt Express; 2021 Aug; 29(18):29068-29081. PubMed ID: 34615024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.
    Merkel A; Tournat V; Gusev V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023206. PubMed ID: 25215842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion Management of Propagating Waveguide Modes on the Water Surface.
    Fu S; Zhou J; Li Y; Shemer L; Arie A
    Phys Rev Lett; 2017 Apr; 118(14):144501. PubMed ID: 28430474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-order Riemann pulses in optical fibers.
    Bongiovanni D; Wetzel B; Li Z; Hu Y; Wabnitz S; Morandotti R; Chen Z
    Opt Express; 2020 Dec; 28(26):39827-39840. PubMed ID: 33379524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution equation for nonlinear Scholte waves.
    Gusev VE; Lauriks W; Thoen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):170-8. PubMed ID: 18244169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic nonlinearity and surface shock waves in soft tissue-like materials.
    Alarcón H; Galaz B; Espíndola D
    Ultrasonics; 2025 Jan; 145():107469. PubMed ID: 39341008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.