These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26871337)
1. Displacement of an Electrically Charged Drop on a Vibrating Bath. Brandenbourger M; Vandewalle N; Dorbolo S Phys Rev Lett; 2016 Jan; 116(4):044501. PubMed ID: 26871337 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of a bouncing droplet onto a vertically vibrated interface. Gilet T; Terwagne D; Vandewalle N; Dorbolo S Phys Rev Lett; 2008 Apr; 100(16):167802. PubMed ID: 18518248 [TBL] [Abstract][Full Text] [Related]
3. Controlling the partial coalescence of a droplet on a vertically vibrated bath. Gilet T; Vandewalle N; Dorbolo S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035302. PubMed ID: 17930296 [TBL] [Abstract][Full Text] [Related]
4. Bouncing of polymeric droplets on liquid interfaces. Gier S; Dorbolo S; Terwagne D; Vandewalle N; Wagner C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066314. PubMed ID: 23368045 [TBL] [Abstract][Full Text] [Related]
5. Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets. Durey M; Milewski PA; Bush JWM Chaos; 2018 Sep; 28(9):096108. PubMed ID: 30278646 [TBL] [Abstract][Full Text] [Related]
6. Visualization of Charge Dynamics when Water Droplets Bounce on a Hydrophobic Surface. Li X; Zhang L; Feng Y; Zhang Y; Xu H; Zhou F; Wang D ACS Nano; 2023 Dec; 17(23):23977-23988. PubMed ID: 38010973 [TBL] [Abstract][Full Text] [Related]
8. Two-frequency forcing of droplet rebounds on a liquid bath. Sampara N; Gilet T Phys Rev E; 2016 Nov; 94(5-1):053112. PubMed ID: 27967031 [TBL] [Abstract][Full Text] [Related]
9. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device. Li Y; Jain M; Ma Y; Nandakumar K Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524 [TBL] [Abstract][Full Text] [Related]
10. Electric field makes Leidenfrost droplets take a leap. Wildeman S; Sun C Soft Matter; 2016 Dec; 12(48):9622-9632. PubMed ID: 27858052 [TBL] [Abstract][Full Text] [Related]
11. Dynamics Behaviors of Droplet on Hydrophobic Surfaces Driven by Electric Field. Liu J; Liu S Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739492 [TBL] [Abstract][Full Text] [Related]
12. Dynamical phenomena: walking and orbiting droplets. Couder Y; Protière S; Fort E; Boudaoud A Nature; 2005 Sep; 437(7056):208. PubMed ID: 16148925 [TBL] [Abstract][Full Text] [Related]
13. Lifetime of a bouncing droplet. Terwagne D; Vandewalle N; Dorbolo S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056311. PubMed ID: 18233760 [TBL] [Abstract][Full Text] [Related]
14. A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid. Jung YM; Kang IS Biomicrofluidics; 2009 Apr; 3(2):22402. PubMed ID: 19693337 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. Grimm RL; Beauchamp JL J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963 [TBL] [Abstract][Full Text] [Related]
16. Non-coalescence of oppositely charged drops. Ristenpart WD; Bird JC; Belmonte A; Dollar F; Stone HA Nature; 2009 Sep; 461(7262):377-80. PubMed ID: 19759616 [TBL] [Abstract][Full Text] [Related]
17. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
18. Pilot-wave dynamics of two identical, in-phase bouncing droplets. Valani RN; Slim AC Chaos; 2018 Sep; 28(9):096114. PubMed ID: 30278618 [TBL] [Abstract][Full Text] [Related]