These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26871557)
41. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Gutierrez O; Mohanakrishnan J; Sharma KR; Meyer RL; Keller J; Yuan Z Water Res; 2008 Nov; 42(17):4549-61. PubMed ID: 18760816 [TBL] [Abstract][Full Text] [Related]
42. Experimental and modeling investigations on the unexpected hydrogen sulfide rebound in a sewer receiving nitrate addition: Mechanism and solution. Liang Z; Wu D; Li G; Sun J; Jiang F; Li Y J Environ Sci (China); 2023 Mar; 125():630-640. PubMed ID: 36375945 [TBL] [Abstract][Full Text] [Related]
43. Assessment of pollutants and gaseous emissions in sewer network in NCT of Delhi. Aswale P; Rao NN; Karthik M; Dhodapkar R; Patkar G; Nandy T J Environ Sci Eng; 2012 Apr; 54(2):206-16. PubMed ID: 24749372 [TBL] [Abstract][Full Text] [Related]
44. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Sun J; Hu S; Sharma KR; Ni BJ; Yuan Z Water Res; 2015 Feb; 69():80-89. PubMed ID: 25437340 [TBL] [Abstract][Full Text] [Related]
45. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
46. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm. Sun J; Ni BJ; Sharma KR; Wang Q; Hu S; Yuan Z Water Res; 2018 Feb; 129():58-65. PubMed ID: 29132122 [TBL] [Abstract][Full Text] [Related]
47. Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil. Huang D; Xu W; Wang Q; Xu Q Chemosphere; 2022 Jan; 286(Pt 1):131650. PubMed ID: 34325261 [TBL] [Abstract][Full Text] [Related]
48. Nitrite production from urine for sulfide control in sewers. Zheng M; Zuo Z; Zhang Y; Cui Y; Dong Q; Liu Y; Huang X; Yuan Z Water Res; 2017 Oct; 122():447-454. PubMed ID: 28624728 [TBL] [Abstract][Full Text] [Related]
49. Microbial-Guided prediction of methane and sulfide production in Sewers: Integrating mechanistic models with Machine learning. Yin WX; Lv JQ; Liu S; Chen JJ; Wei J; Ding C; Yuan Y; Bao HX; Wang HC; Wang AJ Bioresour Technol; 2024 Oct; 415():131640. PubMed ID: 39414164 [TBL] [Abstract][Full Text] [Related]
50. Variation in biofilm structure and activity along the length of a rising main sewer. Mohanakrishnan J; Sharma KR; Meyer RL; Hamilton G; Keller J; Yuan Z Water Environ Res; 2009 Aug; 81(8):800-8. PubMed ID: 19774857 [TBL] [Abstract][Full Text] [Related]
51. Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Zuo Z; Xing Y; Duan H; Ren D; Zheng M; Liu Y; Huang X Water Res; 2023 May; 234():119820. PubMed ID: 36889087 [TBL] [Abstract][Full Text] [Related]
52. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis. Zan F; Tang W; Jiang F; Chen G Water Res; 2021 Sep; 202():117437. PubMed ID: 34298275 [TBL] [Abstract][Full Text] [Related]
53. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes. Sun M; Sun W; Barlaz MA Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757 [TBL] [Abstract][Full Text] [Related]
54. Anoxic sulfide oxidation in wastewater of sewer networks. Yang W; Vollertsen J; Hvitved-Jacobsen T Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859 [TBL] [Abstract][Full Text] [Related]
55. Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. Sun X; Jiang G; Bond PL; Keller J Water Res; 2019 Jun; 157():463-471. PubMed ID: 30981977 [TBL] [Abstract][Full Text] [Related]
56. Methane formation in sewer systems. Guisasola A; de Haas D; Keller J; Yuan Z Water Res; 2008 Mar; 42(6-7):1421-30. PubMed ID: 17988709 [TBL] [Abstract][Full Text] [Related]
57. Characteristics and mechanism of dimethyl trisulfide formation during sulfide control in sewer by adding various oxidants. Gu T; Tan P; Zhou Y; Zhang Y; Zhu D; Zhang T Sci Total Environ; 2019 Jul; 673():719-725. PubMed ID: 31003099 [TBL] [Abstract][Full Text] [Related]
58. Test of transformation mechanism of food waste and its impacts on sulfide and methane production in the sewer system. Zan F; Dai J; Jiang F; Chan RC; Chen G Water Sci Technol; 2020 Feb; 81(4):845-852. PubMed ID: 32460287 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Myhr S; Lillebø BL; Sunde E; Beeder J; Torsvik T Appl Microbiol Biotechnol; 2002 Mar; 58(3):400-8. PubMed ID: 11935194 [TBL] [Abstract][Full Text] [Related]
60. Dynamics and dynamic modelling of H2S production in sewer systems. Sharma KR; Yuan Z; de Haas D; Hamilton G; Corrie S; Keller J Water Res; 2008 May; 42(10-11):2527-38. PubMed ID: 18336860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]