These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1661 related articles for article (PubMed ID: 26871627)

  • 21. Tenascin-C deficiency ameliorates Alzheimer's disease-related pathology in mice.
    Xie K; Liu Y; Hao W; Walter S; Penke B; Hartmann T; Schachner M; Fassbender K
    Neurobiol Aging; 2013 Oct; 34(10):2389-98. PubMed ID: 23673309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of inflammatory processes in Alzheimer's disease.
    Broussard GJ; Mytar J; Li RC; Klapstein GJ
    Inflammopharmacology; 2012 Jun; 20(3):109-26. PubMed ID: 22535513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease.
    Sweeney MD; Sagare AP; Zlokovic BV
    J Cereb Blood Flow Metab; 2015 Jul; 35(7):1055-68. PubMed ID: 25899298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work.
    Kim JH; Nam YP; Jeon SM; Han HS; Suk K
    J Neurochem; 2012 Jun; 121(5):751-62. PubMed ID: 22404335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroinflammation in Alzheimer's disease: an understanding of physiology and pathology.
    Obulesu M; Jhansilakshmi M
    Int J Neurosci; 2014 Apr; 124(4):227-35. PubMed ID: 23919560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Astrocytes contain amyloid-β annular protofibrils in Alzheimer's disease brains.
    Lasagna-Reeves CA; Kayed R
    FEBS Lett; 2011 Oct; 585(19):3052-7. PubMed ID: 21872592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer's disease pathology in mice.
    Djogo N; Jakovcevski I; Müller C; Lee HJ; Xu JC; Jakovcevski M; Kügler S; Loers G; Schachner M
    Neurobiol Dis; 2013 Aug; 56():104-15. PubMed ID: 23639788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice.
    Tan J; Town T; Crawford F; Mori T; DelleDonne A; Crescentini R; Obregon D; Flavell RA; Mullan MJ
    Nat Neurosci; 2002 Dec; 5(12):1288-93. PubMed ID: 12402041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of a role for lactadherin in Alzheimer's disease.
    Boddaert J; Kinugawa K; Lambert JC; Boukhtouche F; Zoll J; Merval R; Blanc-Brude O; Mann D; Berr C; Vilar J; Garabedian B; Journiac N; Charue D; Silvestre JS; Duyckaerts C; Amouyel P; Mariani J; Tedgui A; Mallat Z
    Am J Pathol; 2007 Mar; 170(3):921-9. PubMed ID: 17322377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta.
    Song Q; Huang M; Yao L; Wang X; Gu X; Chen J; Chen J; Huang J; Hu Q; Kang T; Rong Z; Qi H; Zheng G; Chen H; Gao X
    ACS Nano; 2014 Mar; 8(3):2345-59. PubMed ID: 24527692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A new hypothesis for early pathogenesis in Alzheimer's disease: impaired axonal transport mechanism].
    Zhu YB; Lu PH; Sheng ZH
    Sheng Li Ke Xue Jin Zhan; 2008 Jan; 39(1):5-9. PubMed ID: 18357680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine.
    Heneka MT; Nadrigny F; Regen T; Martinez-Hernandez A; Dumitrescu-Ozimek L; Terwel D; Jardanhazi-Kurutz D; Walter J; Kirchhoff F; Hanisch UK; Kummer MP
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6058-63. PubMed ID: 20231476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease.
    Swartzlander DB; Propson NE; Roy ER; Saito T; Saido T; Wang B; Zheng H
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics.
    Fancy NN; Smith AM; Caramello A; Tsartsalis S; Davey K; Muirhead RCJ; McGarry A; Jenkyns MH; Schneegans E; Chau V; Thomas M; Boulger S; Cheung TKD; Adair E; Papageorgopoulou M; Willumsen N; Khozoie C; Gomez-Nicola D; Jackson JS; Matthews PM
    Acta Neuropathol; 2024 May; 147(1):78. PubMed ID: 38695952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inflammation: A Major Target for Compounds to Control Alzheimer's Disease.
    Maccioni RB; Navarrete LP; González A; González-Canacer A; Guzmán-Martínez L; Cortés N
    J Alzheimers Dis; 2020; 76(4):1199-1213. PubMed ID: 32597798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alzheimer's Disease and Sleep-Wake Disturbances: Amyloid, Astrocytes, and Animal Models.
    Vanderheyden WM; Lim MM; Musiek ES; Gerstner JR
    J Neurosci; 2018 Mar; 38(12):2901-2910. PubMed ID: 29563238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling for the pathogenesis of Alzheimer's disease.
    Puri IK; Li L
    PLoS One; 2010 Dec; 5(12):e15176. PubMed ID: 21179474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis.
    Pal A; Rani I; Pawar A; Picozza M; Rongioletti M; Squitti R
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astroglial atrophy in Alzheimer's disease.
    Verkhratsky A; Rodrigues JJ; Pivoriunas A; Zorec R; Semyanov A
    Pflugers Arch; 2019 Oct; 471(10):1247-1261. PubMed ID: 31520182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unravelling the glial response in the pathogenesis of Alzheimer's disease.
    Alibhai JD; Diack AB; Manson JC
    FASEB J; 2018 Nov; 32(11):5766-5777. PubMed ID: 30376380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 84.