These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26871715)

  • 1. A Signal Processing Approach for Detection of Hemodynamic Instability before Decompensation.
    Belle A; Ansari S; Spadafore M; Convertino VA; Ward KR; Derksen H; Najarian K
    PLoS One; 2016; 11(2):e0148544. PubMed ID: 26871715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictors of hemodynamic decompensation in progressive hypovolemia: Compensatory reserve versus heart rate variability.
    Schlotman TE; Suresh MR; Koons NJ; Howard JT; Schiller AM; Cardin S; Convertino VA
    J Trauma Acute Care Surg; 2020 Aug; 89(2S Suppl 2):S161-S168. PubMed ID: 32044875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring.
    Ryan KL; Rickards CA; Ludwig DA; Convertino VA
    Shock; 2010 Jun; 33(6):583-9. PubMed ID: 19997052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart rate variability analysis during central hypovolemia using wavelet transformation.
    Ji SY; Belle A; Ward KR; Ryan KL; Rickards CA; Convertino VA; Najarian K
    J Clin Monit Comput; 2013 Jun; 27(3):289-302. PubMed ID: 23371800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictors of the Onset of Hemodynamic Decompensation During Progressive Central Hypovolemia: Comparison of the Peripheral Perfusion Index, Pulse Pressure Variability, and Compensatory Reserve Index.
    Janak JC; Howard JT; Goei KA; Weber R; Muniz GW; Hinojosa-Laborde C; Convertino VA
    Shock; 2015 Dec; 44(6):548-53. PubMed ID: 26529655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers.
    Elstad M; Walløe L
    Physiol Meas; 2015 Apr; 36(4):671-81. PubMed ID: 25799094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive shock index for real-time patient assessment during simulated hemorrhage.
    Van Sickle C; Schafer K; Mulligan J; Grudic GZ; Moulton SL; Convertino VA
    Aviat Space Environ Med; 2013 Sep; 84(9):907-12. PubMed ID: 24024301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying physiological measurements for medical monitoring: implications for autonomous health care in austere environments.
    Convertino VA; Ryan KL
    J Gravit Physiol; 2007 Jul; 14(1):P39-42. PubMed ID: 18372691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of individual-specific progression to impending cardiovascular instability using arterial waveforms.
    Convertino VA; Grudic G; Mulligan J; Moulton S
    J Appl Physiol (1985); 2013 Oct; 115(8):1196-202. PubMed ID: 23928113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable hemodynamic monitors.
    Tallaj JA; Singla I; Bourge RC
    Cardiol Clin; 2011 May; 29(2):289-99. PubMed ID: 21459250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Noninvasive Stroke Volume Monitoring for Early Detection of Minimal Blood Loss: A Pilot Study.
    Epstein D; Guinzburg A; Sharon S; Kiso S; Glick Y; Marcusohn E; Glass YD; Miller A; Minha S; Furer A
    Shock; 2021 Feb; 55(2):230-235. PubMed ID: 32769818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-layer monitoring system for clinical management of Congestive Heart Failure.
    Guidi G; Pollonini L; Dacso CC; Iadanza E
    BMC Med Inform Decis Mak; 2015; 15 Suppl 3(Suppl 3):S5. PubMed ID: 26391638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lightweight noninvasive trauma monitor for early indication of central hypovolemia and tissue acidosis: a review.
    Soller BR; Zou F; Ryan KL; Rickards CA; Ward K; Convertino VA
    J Trauma Acute Care Surg; 2012 Aug; 73(2 Suppl 1):S106-11. PubMed ID: 22847078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans.
    Soller BR; Yang Y; Soyemi OO; Ryan KL; Rickards CA; Walz JM; Heard SO; Convertino VA
    J Appl Physiol (1985); 2008 Feb; 104(2):475-81. PubMed ID: 18006869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a noninvasive monitor to continuously trend individual responses to hypovolemia.
    Moulton SL; Mulligan J; Santoro MA; Bui K; Grudic GZ; MacLeod D
    J Trauma Acute Care Surg; 2017 Jul; 83(1 Suppl 1):S104-S111. PubMed ID: 28463939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation.
    Yadav K; Singh A; Jaryal AK; Coshic P; Chatterjee K; Deepak KK
    J Clin Monit Comput; 2017 Aug; 31(4):739-746. PubMed ID: 27484693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable hemodynamic monitors.
    Tallaj JA; Singla I; Bourge RC
    Heart Fail Clin; 2009 Apr; 5(2):261-70. PubMed ID: 19249694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic monitoring.
    Hollenberg SM
    Chest; 2013 May; 143(5):1480-1488. PubMed ID: 23648913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic factors associated with acute decompensated heart failure: part 2--use in automated detection.
    Adamson PB; Zile MR; Cho YK; Bennett TD; Bourge RC; Aaron MF; Aranda JM; Abraham WT; Kueffer FJ; Taepke RT
    J Card Fail; 2011 May; 17(5):366-73. PubMed ID: 21549292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.