These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Bujard A; Sol M; Carrupt PA; Martel S Eur J Pharm Sci; 2014 Oct; 63():36-44. PubMed ID: 25008117 [TBL] [Abstract][Full Text] [Related]
4. Screening for CYP3A4 inhibition and induction coupled to parallel artificial membrane permeability assay (PAMPA) for prediction of botanical-drug interactions: The case of açaí and maca. Zhang Y; Rants'o TA; Jung D; Lopez E; Abbott K; Pondugula SR; McLendon L; Qian J; Hansen RA; Calderón AI Phytomedicine; 2019 Jun; 59():152915. PubMed ID: 30981185 [TBL] [Abstract][Full Text] [Related]
5. A new approach to examining the extraction process of Zhishi and Zhiqiao considering the synergistic effect of complex mixtures by PAMPA. Li H; Zeng H; He D; Wang M; Liu L; Liang W; Shu Y; Zhao S; Sun G; Lv C; Xiao C; Liu Y J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():10-17. PubMed ID: 30236780 [TBL] [Abstract][Full Text] [Related]
6. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507 [TBL] [Abstract][Full Text] [Related]
7. Applicability of a blood-brain barrier specific artificial membrane permeability assay at the early stage of natural product-based CNS drug discovery. Könczöl A; Müller J; Földes E; Béni Z; Végh K; Kéry A; Balogh GT J Nat Prod; 2013 Apr; 76(4):655-63. PubMed ID: 23565574 [TBL] [Abstract][Full Text] [Related]
8. Modification of a PAMPA model to predict passive gastrointestinal absorption and plasma protein binding. Bujard A; Voirol H; Carrupt PA; Schappler J Eur J Pharm Sci; 2015 Sep; 77():273-8. PubMed ID: 26118348 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a parallel artificial membrane permeability assay for the fast and simultaneous prediction of human intestinal absorption and plasma protein binding of drug candidates: application to dibenz[b,f]azepine-5-carboxamide derivatives. Fortuna A; Alves G; Soares-da-Silva P; Falcão A J Pharm Sci; 2012 Feb; 101(2):530-40. PubMed ID: 22052653 [TBL] [Abstract][Full Text] [Related]
10. [Advances in parallel artificial membrane permeability assay and its applications]. Wu YF; Liu H; Ni JM Yao Xue Xue Bao; 2011 Aug; 46(8):890-5. PubMed ID: 22007511 [TBL] [Abstract][Full Text] [Related]
11. Permeation prediction of M100240 using the parallel artificial membrane permeability assay. Hwang KK; Martin NE; Jiang L; Zhu C J Pharm Pharm Sci; 2003; 6(3):315-20. PubMed ID: 14738711 [TBL] [Abstract][Full Text] [Related]
12. Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba. Könczöl Á; Rendes K; Dékány M; Müller J; Riethmüller E; Balogh GT J Pharm Biomed Anal; 2016 Nov; 131():167-174. PubMed ID: 27592255 [TBL] [Abstract][Full Text] [Related]
13. [In situ rats single pass perfusion intestinal absorption of the effectivein components in Radix Angelicae Pubescentis]. Wu YN; Luan LB Yao Xue Xue Bao; 2008 Jan; 43(1):102-7. PubMed ID: 18357742 [TBL] [Abstract][Full Text] [Related]
14. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. Ottaviani G; Martel S; Carrupt PA J Med Chem; 2006 Jun; 49(13):3948-54. PubMed ID: 16789751 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Diukendjieva A; Alov P; Tsakovska I; Pencheva T; Richarz A; Kren V; Cronin MTD; Pajeva I Phytomedicine; 2019 Feb; 53():79-85. PubMed ID: 30668415 [TBL] [Abstract][Full Text] [Related]
16. A new in vitro system for evaluation of passive intestinal drug absorption: establishment of a double artificial membrane permeation assay. Kataoka M; Tsuneishi S; Maeda Y; Masaoka Y; Sakuma S; Yamashita S Eur J Pharm Biopharm; 2014 Nov; 88(3):840-6. PubMed ID: 25304077 [TBL] [Abstract][Full Text] [Related]
17. Drug permeability profiling using cell-free permeation tools: Overview and applications. Berben P; Bauer-Brandl A; Brandl M; Faller B; Flaten GE; Jacobsen AC; Brouwers J; Augustijns P Eur J Pharm Sci; 2018 Jul; 119():219-233. PubMed ID: 29660464 [TBL] [Abstract][Full Text] [Related]
18. pH-permeability profiles for drug substances: Experimental detection, comparison with human intestinal absorption and modelling. Oja M; Maran U Eur J Pharm Sci; 2018 Oct; 123():429-440. PubMed ID: 30100533 [TBL] [Abstract][Full Text] [Related]
19. HDM-PAMPA to predict gastrointestinal absorption, binding percentage, equilibrium and kinetics constants with human serum albumin and using 2 end-point measurements. Bujard A; Petit C; Carrupt PA; Rudaz S; Schappler J Eur J Pharm Sci; 2017 Jan; 97():143-150. PubMed ID: 27816629 [TBL] [Abstract][Full Text] [Related]
20. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. Kerns EH; Di L; Petusky S; Farris M; Ley R; Jupp P J Pharm Sci; 2004 Jun; 93(6):1440-53. PubMed ID: 15124203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]