BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26872347)

  • 1. Identification of Soil Microbes Capable of Utilizing Cellobiosan.
    Lian J; Choi J; Tan YS; Howe A; Wen Z; Jarboe LR
    PLoS One; 2016; 11(2):e0149336. PubMed ID: 26872347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of levoglucosan and cellobiosan by
    Linger JG; Hobdey SE; Franden MA; Fulk EM; Beckham GT
    Metab Eng Commun; 2016 Dec; 3():24-29. PubMed ID: 29468111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil.
    Helle S; Bennett NM; Lau K; Matsui JH; Duff SJ
    Carbohydr Res; 2007 Nov; 342(16):2365-70. PubMed ID: 17765879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance thin layer chromatography determination of cellobiosan and levoglucosan in bio-oil obtained by fast pyrolysis of sawdust.
    Tessini C; Vega M; Müller N; Bustamante L; von Baer D; Berg A; Mardones C
    J Chromatogr A; 2011 Jun; 1218(24):3811-5. PubMed ID: 21570078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of levoglucosan-utilizing thermophilic bacteria.
    Iwazaki S; Hirai H; Hamaguchi N; Yoshida N
    Sci Rep; 2018 Mar; 8(1):4066. PubMed ID: 29511307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and Characterization of Levoglucosan-Metabolizing Bacteria.
    Arya AS; Hang MTH; Eiteman MA
    Appl Environ Microbiol; 2022 Feb; 88(4):e0186821. PubMed ID: 34910566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.
    Islam ZU; Zhisheng Y; Hassan el B; Dongdong C; Hongxun Z
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1557-79. PubMed ID: 26433384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil.
    O'Connor KE; O'Leary NP; Marchesi JR; Dobson AD; Duetz W
    Chemosphere; 2005 Nov; 61(7):965-73. PubMed ID: 15869782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Characterization of Fipronil Degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from Rhizospheric Zone of Zea mays.
    Uniyal S; Paliwal R; Verma M; Sharma RK; Rai JP
    Bull Environ Contam Toxicol; 2016 Jun; 96(6):833-8. PubMed ID: 27084098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates.
    Ntougias S; Zervakis GI; Kavroulakis N; Ehaliotis C; Papadopoulou KK
    Syst Appl Microbiol; 2004 Nov; 27(6):746-54. PubMed ID: 15612633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Isolation of phenol-degrading bacteria from natural soil and their phylogenetic analysis].
    Wang YD; Dong XJ; Wang X; Hong Q; Jiang X; Li SP
    Huan Jing Ke Xue; 2007 Mar; 28(3):623-6. PubMed ID: 17633645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation and identification of a strain converting levoglucosan to carotenoid].
    Zhao Y; Chen Y; Sun H; Liu J; Wei M; Xia W
    Wei Sheng Wu Xue Bao; 2014 Jul; 54(7):821-7. PubMed ID: 25252464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering ethanologenic Escherichia coli for levoglucosan utilization.
    Layton DS; Ajjarapu A; Choi DW; Jarboe LR
    Bioresour Technol; 2011 Sep; 102(17):8318-22. PubMed ID: 21719279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a simple cultivation method for isolating hitherto-uncultured cellulase-producing microbes.
    Fujii K; Kuwahara A; Nakamura K; Yamashita Y
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1183-92. PubMed ID: 21656138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of soil bacteria capable of utilizing a corn ethanol fermentation byproduct.
    Packard H; Taylor ZW; Williams SL; Guimarães PI; Toth J; Jensen RV; Senger RS; Kuhn DD; Stevens AM
    PLoS One; 2019; 14(3):e0212685. PubMed ID: 30849084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.
    Woo HL; Hazen TC; Simmons BA; DeAngelis KM
    Syst Appl Microbiol; 2014 Feb; 37(1):60-7. PubMed ID: 24238986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential.
    Mahjoubi M; Jaouani A; Guesmi A; Ben Amor S; Jouini A; Cherif H; Najjari A; Boudabous A; Koubaa N; Cherif A
    N Biotechnol; 2013 Sep; 30(6):723-33. PubMed ID: 23541698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium.
    Zheng J; Feng JQ; Zhou L; Mbadinga SM; Gu JD; Mu BZ
    World J Microbiol Biotechnol; 2018 Feb; 34(2):34. PubMed ID: 29426982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG
    J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.
    Tian JH; Pourcher AM; Peu P
    Lett Appl Microbiol; 2016 Jul; 63(1):30-7. PubMed ID: 27125750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.