These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 26872359)
1. How Copper Nanowires Grow and How To Control Their Properties. Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359 [TBL] [Abstract][Full Text] [Related]
2. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. Chen Z; Ye S; Stewart IE; Wiley BJ ACS Nano; 2014 Sep; 8(9):9673-9. PubMed ID: 25180448 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Rathmell AR; Nguyen M; Chi M; Wiley BJ Nano Lett; 2012 Jun; 12(6):3193-9. PubMed ID: 22642652 [TBL] [Abstract][Full Text] [Related]
4. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Ye S; Rathmell AR; Ha YC; Wilson AR; Wiley BJ Small; 2014 May; 10(9):1771-8. PubMed ID: 24616369 [TBL] [Abstract][Full Text] [Related]
5. Metal nanowire networks: the next generation of transparent conductors. Ye S; Rathmell AR; Chen Z; Stewart IE; Wiley BJ Adv Mater; 2014 Oct; 26(39):6670-87. PubMed ID: 25252266 [TBL] [Abstract][Full Text] [Related]
6. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles. Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350 [TBL] [Abstract][Full Text] [Related]
7. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes. Ahn Y; Jeong Y; Lee D; Lee Y ACS Nano; 2015 Mar; 9(3):3125-33. PubMed ID: 25712446 [TBL] [Abstract][Full Text] [Related]
8. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. Dou L; Cui F; Yu Y; Khanarian G; Eaton SW; Yang Q; Resasco J; Schildknecht C; Schierle-Arndt K; Yang P ACS Nano; 2016 Feb; 10(2):2600-6. PubMed ID: 26820809 [TBL] [Abstract][Full Text] [Related]
9. Real-time visualization of diffusion-controlled nanowire growth in solution. Ye S; Chen Z; Ha YC; Wiley BJ Nano Lett; 2014 Aug; 14(8):4671-6. PubMed ID: 25054865 [TBL] [Abstract][Full Text] [Related]
10. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation. Shi W; Chopra N ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284 [TBL] [Abstract][Full Text] [Related]
11. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films. Glynn C; McNulty D; Geaney H; O'Dwyer C Small; 2016 Nov; 12(43):5954-5962. PubMed ID: 27622769 [TBL] [Abstract][Full Text] [Related]
12. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. Gao J; Chen R; Li DH; Jiang L; Ye JC; Ma XC; Chen XD; Xiong QH; Sun HD; Wu T Nanotechnology; 2011 May; 22(19):195706. PubMed ID: 21430316 [TBL] [Abstract][Full Text] [Related]
13. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106 [TBL] [Abstract][Full Text] [Related]
14. All-Solution-Processed Thermally and Chemically Stable Copper-Nickel Core-Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. Kim K; Kwon HC; Ma S; Lee E; Yun SC; Jang G; Yang H; Moon J ACS Appl Mater Interfaces; 2018 Sep; 10(36):30337-30347. PubMed ID: 30118211 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. Cui F; Yu Y; Dou L; Sun J; Yang Q; Schildknecht C; Schierle-Arndt K; Yang P Nano Lett; 2015 Nov; 15(11):7610-5. PubMed ID: 26496181 [TBL] [Abstract][Full Text] [Related]
16. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107 [TBL] [Abstract][Full Text] [Related]
17. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Sannicolo T; Lagrange M; Cabos A; Celle C; Simonato JP; Bellet D Small; 2016 Nov; 12(44):6052-6075. PubMed ID: 27753213 [TBL] [Abstract][Full Text] [Related]
18. Manipulating nanowire assembly for flexible transparent electrodes. Liu JW; Wang JL; Wang ZH; Huang WR; Yu SH Angew Chem Int Ed Engl; 2014 Dec; 53(49):13477-82. PubMed ID: 25283948 [TBL] [Abstract][Full Text] [Related]
19. Hybrid Copper-Nanowire-Reduced-Graphene-Oxide Coatings: A "Green Solution" Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics. Aliprandi A; Moreira T; Anichini C; Stoeckel MA; Eredia M; Sassi U; Bruna M; Pinheiro C; Laia CAT; Bonacchi S; Samorì P Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28901581 [TBL] [Abstract][Full Text] [Related]
20. Room-Temperature Surface Modification of Cu Nanowires and Their Applications in Transparent Electrodes, SERS-Based Sensors, and Organic Solar Cells. Wang X; Wang R; Zhai H; Shen X; Wang T; Shi L; Yu R; Sun J ACS Appl Mater Interfaces; 2016 Oct; 8(42):28831-28837. PubMed ID: 27701862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]