BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26872481)

  • 1. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
    Ortega-Guerrero A; Espinosa-Duran JM; Velasco-Medina J
    Eur Biophys J; 2016 Jul; 45(5):423-33. PubMed ID: 26872481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations.
    Karnati KR; Wang Y
    Phys Chem Chem Phys; 2018 Apr; 20(14):9389-9400. PubMed ID: 29565091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhance the efficiency of 5-fluorouracil targeted delivery by using a prodrug approach as a novel strategy for prolonged circulation time and improved permeation.
    Pasban S; Raissi H; Pakdel M; Farzad F
    Int J Pharm; 2019 Sep; 568():118491. PubMed ID: 31276765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery.
    Kordzadeh A; Zarif M; Amjad-Iranagh S
    Comput Methods Programs Biomed; 2023 Mar; 230():107332. PubMed ID: 36603233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotubes Having Haeckelite Defects as Potential Drug Carriers. Molecular Dynamics Simulation.
    Torres C; Villarroel I; Rozas R; Contreras L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31771295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations.
    Feng Z; Pearce LV; Xu X; Yang X; Yang P; Blumberg PM; Xie XQ
    J Chem Inf Model; 2015 Mar; 55(3):572-88. PubMed ID: 25642729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane.
    Sahoo AK; Kanchi S; Mandal T; Dasgupta C; Maiti PK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6168-6179. PubMed ID: 29373024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doxorubicin Encapsulation in Carbon Nanotubes Having Haeckelite or Stone-Wales Defects as Drug Carriers: A Molecular Dynamics Approach.
    Contreras L; Villarroel I; Torres C; Rozas R
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33805628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies.
    Yaghoubi A; Ramazani A
    J Control Release; 2020 Nov; 327():198-224. PubMed ID: 32763433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of folate-based carbon nanotube drug delivery systems targeted to folate receptor α by molecular dynamic simulations.
    Jiang Y; Wang C; Zhang M; Liu L; Gao X; Zhang S; Ye D
    Int J Biol Macromol; 2023 Jul; 244():125386. PubMed ID: 37327924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes for delivery of small molecule drugs.
    Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid.
    Dahri M; Akbarialiabad H; Jahromi AM; Maleki R
    BMC Pharmacol Toxicol; 2021 Jul; 22(1):41. PubMed ID: 34261533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes.
    Mehra NK; Jain NK
    J Drug Target; 2013 Sep; 21(8):745-58. PubMed ID: 23822734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations.
    Rungnim C; Rungrotmongkol T; Poo-Arporn RP
    J Mol Graph Model; 2016 Nov; 70():70-76. PubMed ID: 27677150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel.
    Trofimov YA; Krylov NA; Efremov RG
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual covalent functionalization of single-walled carbon nanotubes for effective targeted cancer therapy.
    Assali M; Kittana N; Dayyeh S; Khiar N
    Nanotechnology; 2021 May; 32(20):205101. PubMed ID: 33561838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells.
    Cao X; Tao L; Wen S; Hou W; Shi X
    Carbohydr Res; 2015 Mar; 405():70-7. PubMed ID: 25500334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modelling and dynamics simulations of single-wall carbon nanotube as a drug carrier: New insights into the drug-loading process.
    von Ranke NL; Castro HC; Rodrigues CR
    J Mol Graph Model; 2022 Jun; 113():108145. PubMed ID: 35176504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular tracking of drug release from carbon nanotube vehicles in living cells.
    Kang B; Li J; Chang S; Dai M; Ren C; Dai Y; Chen D
    Small; 2012 Mar; 8(5):777-82. PubMed ID: 22223491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.