These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2687261)

  • 21. Genetic defect of the sodium pump-defective mutant Nap-1 from the marine Vibrio alginolyticus.
    Hayashi M; Fujii J; Unemoto T
    Biochem Mol Biol Int; 1997 Jan; 41(1):41-7. PubMed ID: 9043633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of the recombinant Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae.
    Barquera B; Hellwig P; Zhou W; Morgan JE; Häse CC; Gosink KK; Nilges M; Bruesehoff PJ; Roth A; Lancaster CR; Gennis RB
    Biochemistry; 2002 Mar; 41(11):3781-9. PubMed ID: 11888296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cytochrome that can pump sodium ion.
    Efiok BJ; Webster DA
    Biochem Biophys Res Commun; 1990 Nov; 173(1):370-5. PubMed ID: 2256929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus.
    Kakinuma Y; Unemoto T
    J Bacteriol; 1985 Sep; 163(3):1293-5. PubMed ID: 4030698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of sodium transport in bacteria.
    Dimroth P
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):465-77. PubMed ID: 1970650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro protein translocation into inverted membrane vesicles prepared from Vibrio alginolyticus is stimulated by the electrochemical potential of Na+ in the presence of Escherichia coli SecA.
    Tokuda H; Kim YJ; Mizushima S
    FEBS Lett; 1990 May; 264(1):10-2. PubMed ID: 2159889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioenergetics of marine bacteria.
    Kogure K
    Curr Opin Biotechnol; 1998 Jun; 9(3):278-82. PubMed ID: 9650273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1982 Sep; 257(17):10007-14. PubMed ID: 7107593
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.
    Vorburger T; Nedielkov R; Brosig A; Bok E; Schunke E; Steffen W; Mayer S; Götz F; Möller HM; Steuber J
    Biochim Biophys Acta; 2016 Apr; 1857(4):473-82. PubMed ID: 26721205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiration-driven Na+ pump of the marine Vibrio is encoded by chromosomal DNA.
    Nakamura T; Hayashi S; Yamanaka R; Hamashima H; Arai T; Unemoto T
    Biol Pharm Bull; 1993 Aug; 16(8):751-3. PubMed ID: 8220320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An NADH:quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions.
    Ken-Dror S; Lanyi JK; Schobert B; Silver B; Avi-Dor Y
    Arch Biochem Biophys; 1986 Feb; 244(2):766-72. PubMed ID: 3947089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Na+/e- stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus.
    Bogachev AV; Murtazina RA; Skulachev VP
    FEBS Lett; 1997 Jun; 409(3):475-7. PubMed ID: 9224712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions.
    Tokuda H; Unemoto T
    J Bacteriol; 1983 Nov; 156(2):636-43. PubMed ID: 6313611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump.
    Barquera B
    J Bioenerg Biomembr; 2014 Aug; 46(4):289-98. PubMed ID: 25052842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Existence of Na+-translocating NADH-quinone reductase in Haemophilus influenzae.
    Hayashi M; Nakayama Y; Unemoto T
    FEBS Lett; 1996 Mar; 381(3):174-6. PubMed ID: 8601449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The role of Na+ ions in the respiration, formation of the membrane potential and movement of the alkali-resistant marine bacterium Vibrio alginolyticus].
    Dibrov PA; Kostyrko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biokhimiia; 1987 Jan; 52(1):15-23. PubMed ID: 3814650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Na(+) translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps.
    Steuber J
    Biochim Biophys Acta; 2001 May; 1505(1):45-56. PubMed ID: 11248188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus.
    Tokuda H; Udagawa T; Unemoto T
    FEBS Lett; 1985 Apr; 183(1):95-8. PubMed ID: 2579856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.