These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 26872771)

  • 1. A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi.
    Dutheil JY; Mannhaupt G; Schweizer G; M K Sieber C; Münsterkötter M; Güldener U; Schirawski J; Kahmann R
    Genome Biol Evol; 2016 Feb; 8(3):681-704. PubMed ID: 26872771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenicity determinants in smut fungi revealed by genome comparison.
    Schirawski J; Mannhaupt G; Münch K; Brefort T; Schipper K; Doehlemann G; Di Stasio M; Rössel N; Mendoza-Mendoza A; Pester D; Müller O; Winterberg B; Meyer E; Ghareeb H; Wollenberg T; Münsterkötter M; Wong P; Walter M; Stukenbrock E; Güldener U; Kahmann R
    Science; 2010 Dec; 330(6010):1546-8. PubMed ID: 21148393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut.
    Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C
    BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum.
    Sharma R; Mishra B; Runge F; Thines M
    Genome Biol Evol; 2014 Jul; 6(8):2034-49. PubMed ID: 25062916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum.
    Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY
    Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.
    Laurie JD; Ali S; Linning R; Mannhaupt G; Wong P; Güldener U; Münsterkötter M; Moore R; Kahmann R; Bakkeren G; Schirawski J
    Plant Cell; 2012 May; 24(5):1733-45. PubMed ID: 22623492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
    Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW
    Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Interactions Between Smut Fungi and Their Host Plants.
    Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G
    Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis.
    Lefebvre F; Joly DL; Labbé C; Teichmann B; Linning R; Belzile F; Bakkeren G; Bélanger RR
    Plant Cell; 2013 Jun; 25(6):1946-59. PubMed ID: 23800965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.
    Ali S; Laurie JD; Linning R; Cervantes-Chávez JA; Gaudet D; Bakkeren G
    PLoS Pathog; 2014 Jul; 10(7):e1004223. PubMed ID: 24992661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ustilago maydis effectors and their impact on virulence.
    Lanver D; Tollot M; Schweizer G; Lo Presti L; Reissmann S; Ma LS; Schuster M; Tanaka S; Liang L; Ludwig N; Kahmann R
    Nat Rev Microbiol; 2017 Jul; 15(7):409-421. PubMed ID: 28479603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal pathogenesis: gene clusters unveiled as secrets within the Ustilago maydis code.
    Howlett BJ; Idnurm A; Heitman J
    Curr Biol; 2007 Feb; 17(3):R87-90. PubMed ID: 17276906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity.
    Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH
    Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Sucrose Metabolism Improves the Smut Disease Suppression Potency of Pseudomonas sp. ST4.
    Lin NQ; Liang ZB; Wang HS; Wu XY; Zhang LH; Deng YZ
    Appl Environ Microbiol; 2023 May; 89(5):e0220822. PubMed ID: 37093016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype.
    Rody HVS; Bombardelli RGH; Creste S; Camargo LEA; Van Sluys MA; Monteiro-Vitorello CB
    BMC Genomics; 2019 Nov; 20(1):809. PubMed ID: 31694536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis.
    Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R
    Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome.
    Ye Z; Pan Y; Zhang Y; Cui H; Jin G; McHardy AC; Fan L; Yu X
    DNA Res; 2017 Dec; 24(6):635-648. PubMed ID: 28992048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane.
    Taniguti LM; Schaker PD; Benevenuto J; Peters LP; Carvalho G; Palhares A; Quecine MC; Nunes FR; Kmit MC; Wai A; Hausner G; Aitken KS; Berkman PJ; Fraser JA; Moolhuijzen PM; Coutinho LL; Creste S; Vieira ML; Kitajima JP; Monteiro-Vitorello CB
    PLoS One; 2015; 10(6):e0129318. PubMed ID: 26065709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae.
    Thon MR; Pan H; Diener S; Papalas J; Taro A; Mitchell TK; Dean RA
    Genome Biol; 2006; 7(2):R16. PubMed ID: 16507177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.