These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 26872771)

  • 21. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi.
    Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Domestication of maize, sorghum, and sugarcane did not drive the divergence of their smut pathogens.
    Munkacsi AB; Stoxen S; May G
    Evolution; 2007 Feb; 61(2):388-403. PubMed ID: 17348948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease.
    Zuo W; Depotter JRL; Gupta DK; Thines M; Doehlemann G
    New Phytol; 2021 Oct; 232(2):719-733. PubMed ID: 34270791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize.
    Ghareeb H; Zhao Y; Schirawski J
    Mol Plant Pathol; 2019 Jan; 20(1):124-136. PubMed ID: 30136754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of
    Schuster M; Schweizer G; Reißmann S; Happel P; Aßmann D; Rössel N; Güldener U; Mannhaupt G; Ludwig N; Winterberg S; Pellegrin C; Tanaka S; Vincon V; Presti LL; Wang L; Bender L; Gonzalez C; Vranes M; Kämper J; Seong K; Krasileva K; Kahmann R
    Mol Plant Microbe Interact; 2024 Mar; 37(3):250-263. PubMed ID: 38416124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals.
    Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW
    Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae.
    Münsterkötter M; Steinberg G
    BMC Genomics; 2007 Dec; 8():473. PubMed ID: 18096044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors.
    Courville KJ; Frantzeskakis L; Gul S; Haeger N; Kellner R; Heßler N; Day B; Usadel B; Gupta YK; van Esse HP; Brachmann A; Kemen E; Feldbrügge M; Göhre V
    New Phytol; 2019 May; 222(3):1474-1492. PubMed ID: 30663769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations.
    Kellner R; Hanschke C; Begerow D
    PLoS One; 2014; 9(6):e98837. PubMed ID: 24887029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genome analysis and genome evolution of members of the magnaporthaceae family of fungi.
    Okagaki LH; Sailsbery JK; Eyre AW; Dean RA
    BMC Genomics; 2016 Feb; 17():135. PubMed ID: 26911875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fungal core effector Pep1 is conserved across smuts of dicots and monocots.
    Hemetsberger C; Mueller AN; Matei A; Herrberger C; Hensel G; Kumlehn J; Mishra B; Sharma R; Thines M; Hückelhoven R; Doehlemann G
    New Phytol; 2015 May; 206(3):1116-1126. PubMed ID: 25628012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do TE activity and counteracting genome defenses, RNAi and methylation, shape the sex lives of smut fungi?
    Laurie JD; Linning R; Wong P; Bakkeren G
    Plant Signal Behav; 2013 Apr; 8(4):e23853. PubMed ID: 23425853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smut fungi as a stratagem to characterize rust effectors: opportunities and challenges.
    Jaswal R; Rajarammohan S; Dubey H; Sharma TR
    World J Microbiol Biotechnol; 2020 Sep; 36(10):150. PubMed ID: 32924088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.
    Sharma R; Xia X; Riess K; Bauer R; Thines M
    Genome Biol Evol; 2015 Aug; 7(9):2781-98. PubMed ID: 26314305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis.
    Fernández-Alvarez A; Elías-Villalobos A; Ibeas JI
    Fungal Genet Biol; 2010 Sep; 47(9):727-35. PubMed ID: 20554055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis.
    Khrunyk Y; Münch K; Schipper K; Lupas AN; Kahmann R
    New Phytol; 2010 Sep; 187(4):957-968. PubMed ID: 20673282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison.
    Ho EC; Cahill MJ; Saville BJ
    BMC Genomics; 2007 Sep; 8():334. PubMed ID: 17892571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes.
    Schuster M; Schweizer G; Kahmann R
    Fungal Genet Biol; 2018 Mar; 112():21-30. PubMed ID: 28089076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane.
    Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y
    Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.