These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2687292)

  • 1. Evidence that microtubules do not mediate opsin vesicle transport in photoreceptors.
    Vaughan DK; Fisher SK; Bernstein SA; Hale IL; Linberg KA; Matsumoto B
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3053-62. PubMed ID: 2687292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of retinal detachment on rod disc membrane assembly in cultured frog retinas.
    Hale IL; Fisher SK; Matsumoto B
    Invest Ophthalmol Vis Sci; 1991 Oct; 32(11):2873-81. PubMed ID: 1833357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disk membrane initiation and insertion are not required for axial disk displacement in Xenopus laevis rod outer segments.
    Kaplan MW
    Curr Eye Res; 1998 Jan; 17(1):73-8. PubMed ID: 9472474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors.
    Williams DS; Linberg KA; Vaughan DK; Fariss RN; Fisher SK
    J Comp Neurol; 1988 Jun; 272(2):161-76. PubMed ID: 3397406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules in a rod-specific cytoskeleton associated with outer segment incisures.
    Eckmiller MS
    Vis Neurosci; 2000; 17(5):711-22. PubMed ID: 11153651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis.
    Nemet I; Tian G; Imanishi Y
    J Neurosci; 2014 Jun; 34(24):8164-74. PubMed ID: 24920621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diurnal rhythm in opsin content of Rana pipiens rod inner segments.
    Bird AC; Flannery JG; Bok D
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1028-39. PubMed ID: 2971023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies.
    Defoe DM; Besharse JC
    J Neurosci; 1985 Apr; 5(4):1023-34. PubMed ID: 3156972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas.
    Papermaster DS; Schneider BG; Besharse JC
    Invest Ophthalmol Vis Sci; 1985 Oct; 26(10):1386-404. PubMed ID: 2931395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical localization of opsin in rod photoreceptors during periods of rapid disc assembly.
    Besharse JC; Wetzel MG
    J Neurocytol; 1995 May; 24(5):371-88. PubMed ID: 7544404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The actin network in the ciliary stalk of photoreceptors functions in the generation of new outer segment discs.
    Hale IL; Fisher SK; Matsumoto B
    J Comp Neurol; 1996 Dec; 376(1):128-42. PubMed ID: 8946288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin.
    Fliesler SJ; Rayborn ME; Hollyfield JG
    J Cell Biol; 1985 Feb; 100(2):574-87. PubMed ID: 3155750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane addition to rod photoreceptor outer segments: light stimulates membrane assembly in the absence of increased membrane biosynthesis.
    Hollyfield JG; Rayborn ME; Verner GE; Maude MB; Anderson RE
    Invest Ophthalmol Vis Sci; 1982 Apr; 22(4):417-27. PubMed ID: 6460718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment.
    Burgoyne T; Meschede IP; Burden JJ; Bailly M; Seabra MC; Futter CE
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15922-7. PubMed ID: 26668363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly.
    O'Connor P; Burnside B
    J Cell Biol; 1981 Jun; 89(3):517-24. PubMed ID: 6894759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and maintenance of outer segments by isolated chick embryo photoreceptor cells in culture.
    Saga T; Scheurer D; Adler R
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):561-73. PubMed ID: 8595956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the transport of opsin in the connecting cilium and basal rod outer segment in rat retina: rapid-freeze, deep-etch and horseradish peroxidase labelling studies.
    Miyaguchi K; Hashimoto PH
    J Neurocytol; 1992 Jun; 21(6):449-57. PubMed ID: 1383431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors.
    Papermaster DS; Schneider BG; DeFoe D; Besharse JC
    J Histochem Cytochem; 1986 Jan; 34(1):5-16. PubMed ID: 2934469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A concentration of fucosylated glycoconjugates at the base of cone outer segments: quantitative electron microscope autoradiography.
    Anderson DH; Fisher SK; Breding DJ
    Exp Eye Res; 1986 Mar; 42(3):267-83. PubMed ID: 3709697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish.
    Takita S; Wada Y; Kawamura S
    Sci Rep; 2016 Nov; 6():36590. PubMed ID: 27811999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.