BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26873136)

  • 1. Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer.
    Valta MP; Zhao H; Saar M; Tuomela J; Nolley R; Linxweiler J; Sandholm J; Lehtimäki J; Härkönen P; Coleman I; Nelson PS; Corey E; Peehl DM
    Clin Exp Metastasis; 2016 Apr; 33(4):325-37. PubMed ID: 26873136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spheroid culture of LuCaP 147 as an authentic preclinical model of prostate cancer subtype with SPOP mutation and hypermutator phenotype.
    Saar M; Zhao H; Nolley R; Young SR; Coleman I; Nelson PS; Vessella RL; Peehl DM
    Cancer Lett; 2014 Sep; 351(2):272-80. PubMed ID: 24998678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment and serial passage of cell cultures derived from LuCaP xenografts.
    Young SR; Saar M; Santos J; Nguyen HM; Vessella RL; Peehl DM
    Prostate; 2013 Sep; 73(12):1251-62. PubMed ID: 23740600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy studies of an antibody-drug conjugate PSMA-ADC in patient-derived prostate cancer xenografts.
    DiPippo VA; Olson WC; Nguyen HM; Brown LG; Vessella RL; Corey E
    Prostate; 2015 Feb; 75(3):303-13. PubMed ID: 25327986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models.
    Navone NM; van Weerden WM; Vessella RL; Williams ED; Wang Y; Isaacs JT; Nguyen HM; Culig Z; van der Pluijm G; Rentsch CA; Marques RB; de Ridder CMA; Bubendorf L; Thalmann GN; Brennen WN; Santer FR; Moser PL; Shepherd P; Efstathiou E; Xue H; Lin D; Buijs J; Bosse T; Collins A; Maitland N; Buzza M; Kouspou M; Achtman A; Taylor RA; Risbridger G; Corey E
    Prostate; 2018 Dec; 78(16):1262-1282. PubMed ID: 30073676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics.
    Nguyen HM; Vessella RL; Morrissey C; Brown LG; Coleman IM; Higano CS; Mostaghel EA; Zhang X; True LD; Lam HM; Roudier M; Lange PH; Nelson PS; Corey E
    Prostate; 2017 May; 77(6):654-671. PubMed ID: 28156002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors.
    Wu JD; Odman A; Higgins LM; Haugk K; Vessella R; Ludwig DL; Plymate SR
    Clin Cancer Res; 2005 Apr; 11(8):3065-74. PubMed ID: 15837762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature.
    Labrecque MP; Brown LG; Coleman IM; Nguyen HM; Lin DW; Corey E; Nelson PS; Morrissey C
    PLoS One; 2021; 16(1):e0245602. PubMed ID: 33471819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells.
    Namekawa T; Ikeda K; Horie-Inoue K; Inoue S
    Cells; 2019 Jan; 8(1):. PubMed ID: 30669516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combination of antagonists of LHRH with antagonists of GHRH improves inhibition of androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancers.
    Stangelberger A; Schally AV; Zarandi M; Heinrich E; Groot K; Havt A; Kanashiro CA; Varga JL; Halmos G
    Prostate; 2007 Sep; 67(12):1339-53. PubMed ID: 17624923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23.
    Ellis WJ; Vessella RL; Buhler KR; Bladou F; True LD; Bigler SA; Curtis D; Lange PH
    Clin Cancer Res; 1996 Jun; 2(6):1039-48. PubMed ID: 9816265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.
    Borges GT; Vêncio EF; Quek SI; Chen A; Salvanha DM; Vêncio RZ; Nguyen HM; Vessella RL; Cavanaugh C; Ware CB; Troisch P; Liu AY
    J Cell Physiol; 2016 Sep; 231(9):2040-7. PubMed ID: 26773436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-Derived Xenograft Models for Translational Prostate Cancer Research and Drug Development.
    Philp LK
    Methods Mol Biol; 2024; 2806():153-185. PubMed ID: 38676802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts.
    Thomas PB; Alinezhad S; Joshi A; Sweeney K; Tse BWC; Tevz G; McPherson S; Nelson CC; Williams ED; Vela I
    Curr Oncol; 2023 Oct; 30(11):9437-9447. PubMed ID: 37999103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LuCaP 35: a new model of prostate cancer progression to androgen independence.
    Corey E; Quinn JE; Buhler KR; Nelson PS; Macoska JA; True LD; Vessella RL
    Prostate; 2003 Jun; 55(4):239-46. PubMed ID: 12712403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-renewing Pten-/- TP53-/- protospheres produce metastatic adenocarcinoma cell lines with multipotent progenitor activity.
    Abou-Kheir W; Hynes PG; Martin P; Yin JJ; Liu YN; Seng V; Lake R; Spurrier J; Kelly K
    PLoS One; 2011; 6(10):e26112. PubMed ID: 22022528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of angiopoietin-2 in LuCaP 23.1 prostate cancer tumors decreases tumor growth and viability.
    Morrissey C; Dowell A; Koreckij TD; Nguyen H; Lakely B; Fanslow WC; True LD; Corey E; Vessella RL
    Prostate; 2010 Dec; 70(16):1799-808. PubMed ID: 20583134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of androgen-independent growth of prostate cancer xenografts by 17beta-estradiol.
    Corey E; Quinn JE; Emond MJ; Buhler KR; Brown LG; Vessella RL
    Clin Cancer Res; 2002 Apr; 8(4):1003-7. PubMed ID: 11948106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.