These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2687322)

  • 1. Gas chromatographic assessment of alcoholyzed fatty acids from yeasts: a new chemotaxonomic method.
    Brondz I; Olsen I; Sjöström M
    J Clin Microbiol; 1989 Dec; 27(12):2815-9. PubMed ID: 2687322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fatty acid composition of Candida species by gas-liquid chromatography using a polar column.
    Kobayashi K; Suginaka H; Yano I
    Microbios; 1987; 51(206):37-42. PubMed ID: 3309574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate analyses of cellular carbohydrates and fatty acids of Candida albicans, Torulopsis glabrata, and Saccharomyces cerevisiae.
    Brondz I; Olsen I
    J Clin Microbiol; 1990 Aug; 28(8):1854-7. PubMed ID: 2203815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid chromatography: a rapid method for identification of different species of Candida.
    Gunasekaran M; Hughes WT
    Mycologia; 1980; 72(3):505-11. PubMed ID: 6995831
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of species of Candida, Cryptococcus, and Torulopsis by gas-liquid chromatography.
    Gangopadhyay PK; Thadepalli H; Roy I; Ansari A
    J Infect Dis; 1979 Dec; 140(6):952-8. PubMed ID: 396339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminant analysis of cellular fatty acids of Candida species, Torulopsis glabrata, and Cryptococcus neoformans determined by gas-liquid chromatography.
    Marumo K; Aoki Y
    J Clin Microbiol; 1990 Jul; 28(7):1509-13. PubMed ID: 2199515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminative power of fatty acid methyl ester (FAME) analysis using the microbial identification system (MIS) for Candida (Torulopsis) glabrata and Saccharomyces cerevisiae.
    Peltroche-Llacsahuanga H; Schmidt S; Lütticken R; Haase G
    Diagn Microbiol Infect Dis; 2000 Dec; 38(4):213-21. PubMed ID: 11146246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling postmortem ethanol production by C. albicans: Experimental study and multivariate evaluation.
    Velivasi G; Sakkas H; Kourkoumelis N; Boumba VA
    Forensic Sci Int; 2021 Jul; 324():110809. PubMed ID: 33993011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-dependent oxidation of methanol, ethanol, propanol and butanol by hepatic microsomes.
    Teschke R; Hasumura Y; Lieber CS
    Biochem Biophys Res Commun; 1974 Sep; 60(2):851-7. PubMed ID: 4154098
    [No Abstract]   [Full Text] [Related]  

  • 10. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. III. Higher alcohols as byproducts of the biosynthesis of amino acids tauthor's transl)].
    Vollbrecht D; Radler F
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(3):238-44. PubMed ID: 1103521
    [No Abstract]   [Full Text] [Related]  

  • 11. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures.
    Steinbusch KJ; Hamelers HV; Buisman CJ
    Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Autochthonous yeasts isolated in Tenerife wines and their influence on ethyl acetate and higher alcohol concentrations analyzed by gas chromatography].
    Salvadores MP; Díaz ME; Cardell E
    Microbiologia; 1993 Dec; 9(2):107-12. PubMed ID: 8172687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro esterification of fatty acids by various alcohols in rats and rabbits.
    Carlson GP
    Toxicol Lett; 1994 Jan; 70(1):57-61. PubMed ID: 8310457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [PREPARATION OF MATERIAL FOR ASSAY BY PAPER CHROMATOGRAPHY OF VOLATILE FATTY ACIDS PRODUCED BY YEAST].
    FATEEVA NV
    Mikrobiologiia; 1964; 33():533-6. PubMed ID: 14241230
    [No Abstract]   [Full Text] [Related]  

  • 15. Active transport of alcohol in Corynebacterium acetophilum.
    Murooka Y; Harada T
    J Bacteriol; 1974 Apr; 118(1):149-54. PubMed ID: 4821092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glucose concentration on the physiology and lipid composition of some yeasts.
    Johnson B; Nelson SJ; Brown CM
    Antonie Van Leeuwenhoek; 1972; 38(2):129-36. PubMed ID: 4555628
    [No Abstract]   [Full Text] [Related]  

  • 17. Derivatization and Gas Chromatography of Fatty Acids from Yeast.
    Knittelfelder OL; Kohlwein SD
    Cold Spring Harb Protoc; 2017 May; 2017(5):. PubMed ID: 28461653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method.
    Brahm J
    J Gen Physiol; 1983 Feb; 81(2):283-304. PubMed ID: 6842175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic relatedness of Candida albicans to asporogenous and ascosporogenous yeasts as reflected by nucleic acid homologies.
    Segal E; Eylan E
    Microbios; 1974 Jan; 9(33):25-33. PubMed ID: 4597677
    [No Abstract]   [Full Text] [Related]  

  • 20. [Lipids or various candida species].
    Pospísil L; Kabátová A; Cerniková M; Pospíchal O
    Dermatol Monatsschr; 1974 Apr; 160(4):278-81. PubMed ID: 4600083
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.