These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26873282)

  • 1. Uncertainty quantification for personalized analyses of human proximal femurs.
    Wille H; Ruess M; Rank E; Yosibash Z
    J Biomech; 2016 Feb; 49(4):520-7. PubMed ID: 26873282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain distribution in the proximal Human femur during in vitro simulated sideways fall.
    Zani L; Erani P; Grassi L; Taddei F; Cristofolini L
    J Biomech; 2015 Jul; 48(10):2130-43. PubMed ID: 25843261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.
    Biehler J; Gee MW; Wall WA
    Biomech Model Mechanobiol; 2015 Jun; 14(3):489-513. PubMed ID: 25245816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical and biomechanical investigations of the iliotibial tract.
    Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU
    Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QCT-based failure analysis of proximal femurs under various loading orientations.
    Mirzaei M; Keshavarzian M; Alavi F; Amiri P; Samiezadeh S
    Med Biol Eng Comput; 2015 Jun; 53(6):477-86. PubMed ID: 25731689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification.
    Berggren CC; Jiang D; Jack Wang YF; Bergquist JA; Rupp LC; Liu Z; MacLeod RS; Narayan A; Timmins LH
    Biomech Model Mechanobiol; 2024 Jun; 23(3):927-940. PubMed ID: 38361087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanical loading of the human femoral neck].
    Hert J; Fiala P; Jírová J
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):222-9. PubMed ID: 11706546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs.
    Enoksen CH; Gjerdet NR; Klaksvik J; Arthursson AJ; Schnell-Husby O; Wik TS
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():28-33. PubMed ID: 26785385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR; Vignos MF; Lenhart RL; Kaiser J; Thelen DG
    J Biomech Eng; 2016 Feb; 138(2):021017. PubMed ID: 26769446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics.
    Laz PJ; Stowe JQ; Baldwin MA; Petrella AJ; Rullkoetter PJ
    J Biomech; 2007; 40(13):2831-6. PubMed ID: 17475268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
    Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T
    Bone; 2012 Apr; 50(4):824-9. PubMed ID: 22306697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of growth plate geometry and growth direction on prediction of proximal femoral morphology.
    Yadav P; Shefelbine SJ; Gutierrez-Farewik EM
    J Biomech; 2016 Jun; 49(9):1613-1619. PubMed ID: 27063249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.