BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 26873286)

  • 1. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.
    Biswas B; Singh R; Kumar J; Khan AA; Krishna BB; Bhaskar T
    Bioresour Technol; 2016 Aug; 213():319-326. PubMed ID: 26873286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical, Thermal and Antioxidant Properties of Lignins Solubilized during Soda/AQ Pulping of Orange and Olive Tree Pruning Residues.
    Eugenio ME; Martín-Sampedro R; Santos JI; Wicklein B; Ibarra D
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34201524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer properties of softwood organosolv lignins produced in two different reactor systems.
    Joseph P; Tanase-Opedal M; Moe ST
    Biopolymers; 2023 Dec; 114(12):e23566. PubMed ID: 37795978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin composition and structure in young versus adult Eucalyptus globulus plants.
    Rencoret J; Gutiérrez A; Nieto L; Jiménez-Barbero J; Faulds CB; Kim H; Ralph J; Martínez AT; Del Río JC
    Plant Physiol; 2011 Feb; 155(2):667-82. PubMed ID: 21098672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic hydrothermal liquefaction of alkali lignin for monophenols production over homologous biochar-supported copper catalysts in water.
    Zhang J; Ge Y; Li Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126656. PubMed ID: 37660845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the dependence of biochar properties on different types of biomass.
    Gholizadeh M; Meca S; Zhang S; Clarens F; Hu X
    Waste Manag; 2024 Jun; 182():142-163. PubMed ID: 38653043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Relationship between the Structure and Pyrolysis Characteristics of Lignin Isolated from Eucalyptus, Pine, and Rice Straw through the Use of Deep Eutectic Solvent.
    Li T; Jin X; Shen X; Liu H; Tong R; Qiu X; Xu J
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis characteristics and kinetics of the alga Saccharina japonica.
    Kim SS; Ly HV; Choi GH; Kim J; Woo HC
    Bioresour Technol; 2012 Nov; 123():445-51. PubMed ID: 22940354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants.
    Alzagameem A; Khaldi-Hansen BE; Büchner D; Larkins M; Kamm B; Witzleben S; Schulze M
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different precursors on the structure of lignin-based biochar and its ability to adsorb benzopyrene from sesame oil.
    Xu S; Yuan JY; Zhang YT; Yang QL; Zhang CX; Guo Q; Qin Z; Liu HM; Wang XD; Mei HX; Duan YH
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132216. PubMed ID: 38729483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promotion of levoglucosan production from biomass pyrolysis by hydrogen peroxide pre-oxidation.
    Yang H; Li X; Liu S; Lin G; Guo X; Wang X; Ding K; Huang Y; Zhang S
    Bioresour Technol; 2024 May; 400():130667. PubMed ID: 38583674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of lignin-based resin and fabrication of sustainable transparent wood based on bio-recycling concept.
    Pan N; Sheng X; Shi R; Jia H; Zhang J; Li N; Shi H; Wang B; Ping Q
    Int J Biol Macromol; 2024 May; 268(Pt 1):131620. PubMed ID: 38631578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Transformation of Technical Lignins into Humic-Like Plant Stimulants through Fenton-Based Advanced Oxidation: Accelerating Natural Fungus-Driven Humification.
    Jeong HJ; Cha JY; Choi JH; Jang KS; Lim J; Kim WY; Seo DC; Jeon JR
    ACS Omega; 2018 Jul; 3(7):7441-7453. PubMed ID: 30087914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Pyrolysis-Gas Chromatography/Mass Spectrometry as a Tool to Study the Natural Variation in Biopolymers in Different Tissues of Economically Important European Softwood Species.
    Hentges D; Gérardin P; Vinchelin P; Dumarçay S
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined hemicellulolytic and phenoloxidase activities of Thermobacillus xylanilyticus enable growth on lignin-rich substrates and the release of phenolic molecules.
    Czerwiec Q; Chabbert B; Crônier D; Kurek B; Rakotoarivonina H
    Bioresour Technol; 2024 Apr; 397():130507. PubMed ID: 38423483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the Rapid Devolatilization of Mineral-Free Lignins.
    Niksa S
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896287
    [No Abstract]   [Full Text] [Related]  

  • 17. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion.
    Adams JM; Ross AB; Anastasakis K; Hodgson EM; Gallagher JA; Jones JM; Donnison IS
    Bioresour Technol; 2011 Jan; 102(1):226-34. PubMed ID: 20685112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin phenolation by graft copolymerization to boost its reactivity.
    Singh M; Lee SC; Won K
    Int J Biol Macromol; 2024 May; 266(Pt 2):131258. PubMed ID: 38556229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of 12-mer peptides that bind to wood lignin.
    Yamaguchi A; Isozaki K; Nakamura M; Takaya H; Watanabe T
    Sci Rep; 2016 Feb; 6():21833. PubMed ID: 26903196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Extraction Method on the Structure of Lignin from Ball-Milled Hardwood.
    Sapouna I; van Erven G; Heidling E; Lawoko M; McKee LS
    ACS Sustain Chem Eng; 2023 Oct; 11(43):15533-15543. PubMed ID: 37920800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.