BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26873365)

  • 1. Cationic, amphiphilic copolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord.
    Gwak SJ; Nice J; Zhang J; Green B; Macks C; Bae S; Webb K; Lee JS
    Acta Biomater; 2016 Apr; 35():98-108. PubMed ID: 26873365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitutable charged polymeric (PLGA)(2)-b-PEI micelles for gene therapeutics delivery.
    Mishra D; Kang HC; Bae YH
    Biomaterials; 2011 May; 32(15):3845-54. PubMed ID: 21354616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical stability and transfection efficiency of cationic amphiphilic copolymer/pDNA polyplexes for spinal cord injury repair.
    Gwak SJ; Macks C; Bae S; Cecil N; Lee JS
    Sci Rep; 2017 Sep; 7(1):11247. PubMed ID: 28900263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery.
    Wang W; Balk M; Deng Z; Wischke C; Gossen M; Behl M; Ma N; Lendlein A
    J Control Release; 2016 Nov; 242():71-79. PubMed ID: 27498020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model.
    Gwak SJ; Macks C; Jeong DU; Kindy M; Lynn M; Webb K; Lee JS
    Biomaterials; 2017 Mar; 121():155-166. PubMed ID: 28088077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery.
    Thapa B; Plianwong S; Remant Bahadur KC; Rutherford B; Uludağ H
    Acta Biomater; 2016 Mar; 33():213-24. PubMed ID: 26802444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and evaluation of N-(2,3-dihydroxypropyl)-PEIs as efficient vectors for nucleic acids.
    Tripathi SK; Yadav S; Gupta KC; Kumar P
    Mol Biosyst; 2012 Apr; 8(5):1426-34. PubMed ID: 22419101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscaled buffering zone of charged (PLGA)n-b-bPEI micelles in acidic microclimate for potential protein delivery application.
    Kang HC; Lee JE; Bae YH
    J Control Release; 2012 Jun; 160(3):440-50. PubMed ID: 22405902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids.
    Bansal R; Tayal S; Gupta KC; Kumar P
    Org Biomol Chem; 2015 Mar; 13(10):3128-35. PubMed ID: 25633362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic polyethylenimine polymers mediate efficient delivery of DNA and siRNA in mammalian cells.
    Mahato M; Kumar P; Sharma AK
    Mol Biosyst; 2013 Apr; 9(4):780-91. PubMed ID: 23420479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.
    Gwak SJ; Yun Y; Yoon DH; Kim KN; Ha Y
    PLoS One; 2016; 11(1):e0147389. PubMed ID: 26824765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles.
    Du YZ; Cai LL; Li J; Zhao MD; Chen FY; Yuan H; Hu FQ
    Int J Nanomedicine; 2011; 6():1559-68. PubMed ID: 21845046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells.
    Tripathi SK; Gupta N; Mahato M; Gupta KC; Kumar P
    Colloids Surf B Biointerfaces; 2014 Mar; 115():79-85. PubMed ID: 24333556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery.
    Intra J; Salem AK
    J Pharm Sci; 2010 Jan; 99(1):368-84. PubMed ID: 19670295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local delivery of RhoA siRNA by PgP nanocarrier reduces inflammatory response and improves neuronal cell survival in a rat TBI model.
    Macks C; Jeong D; Lee JS
    Nanomedicine; 2021 Feb; 32():102343. PubMed ID: 33259960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of a novel biodegradable poly(ester amine) copolymer based on poly(L-lactide) and low molecular weight polyethylenimine for gene delivery.
    Guo QF; Liu TT; Yan X; Wang XH; Shi S; Luo F; Qian ZY
    Int J Nanomedicine; 2011; 6():1641-9. PubMed ID: 21904454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.
    Pezzoli D; Olimpieri F; Malloggi C; Bertini S; Volonterio A; Candiani G
    PLoS One; 2012; 7(4):e34711. PubMed ID: 22509349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application.
    Wang J; Li S; Chen T; Xian W; Zhang H; Wu L; Zhu W; Zeng Q
    J Mater Sci Mater Med; 2019 Aug; 30(8):93. PubMed ID: 31392433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Transfection Mediated by Catiomers Requires Free Highly Charged Polymer Chains To Overcome Intracellular Barriers.
    Albuquerque LJC; de Castro CE; Riske KA; da Silva MCC; Muraro PIR; Schmidt V; Giacomelli C; Giacomelli FC
    Biomacromolecules; 2017 Jun; 18(6):1918-1927. PubMed ID: 28453254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.