These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26873389)

  • 1. Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood.
    Gabriel J; Žižka Z; Švec K; Nasswettrová A; Šmíra P; Kofroňová O; Benada O
    Folia Microbiol (Praha); 2016 Mar; 61(2):119-28. PubMed ID: 26873389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The elemental content in the mycelium of the ectomycorrhizal fungus Piloderma sp. during the colonization of hardened wood ash.
    Hagerberg D; Pallon J; Wallander H
    Mycorrhiza; 2005 Sep; 15(6):387-92. PubMed ID: 16021479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serpula lacrymans, Wood and Buildings.
    Watkinson SC; Eastwood DC
    Adv Appl Microbiol; 2012; 78():121-49. PubMed ID: 22305095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of autofluorescence of the brown-rot fungus Piptoporus betulinus by metal ions.
    Zižka Z; Vêtrovský T; Gabriel J
    Folia Microbiol (Praha); 2010 Nov; 55(6):625-8. PubMed ID: 21253910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of long-distance alpha-aminoisobutyric acid translocation dynamics during resource capture by Serpula lacrymans.
    Tlalka M; Fricker M; Watkinson S
    Appl Environ Microbiol; 2008 May; 74(9):2700-8. PubMed ID: 18344339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi.
    Lindahl BD; Finlay RD
    New Phytol; 2006; 169(2):389-97. PubMed ID: 16411941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal accumulation of metals from building materials during brown rot wood decay.
    Hastrup AC; Jensen B; Jellison J
    Arch Microbiol; 2014 Aug; 196(8):565-74. PubMed ID: 24859913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Chemical Structure of Thermally Modified Spruce Wood Due to Decaying Fungi.
    Vidholdová Z; Kačík F; Reinprecht L; Kučerová V; Luptáková J
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of metals accumulation in cultured in vitro mycelium and naturally grown fruiting bodies of Boletus badius and Cantharellus cibarius.
    Reczyński W; Muszyńska B; Opoka W; Smalec A; Sułkowska-Ziaja K; Malec M
    Biol Trace Elem Res; 2013 Jun; 153(1-3):355-62. PubMed ID: 23613150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary fluorescence (autofluorescence) of fruiting bodies of the wood-rotting fungus Fomes fomentarius.
    Zizka Z; Gabriel J
    Folia Microbiol (Praha); 2006; 51(2):109-13. PubMed ID: 16821719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolic Compounds of Inonotus rheades (Agaricomycetes) Mycelium: RP-UPLC-DAD-ESI/MS Profile and Effect of Light Wavelength on Styrylpyrone Content.
    Gornostai TG; Borovskii GG; Kashchenko NI; Olennikov DN
    Int J Med Mushrooms; 2018; 20(7):637-645. PubMed ID: 30055555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices.
    González-Guerrero M; Melville LH; Ferrol N; Lott JN; Azcón-Aguilar C; Peterson RL
    Can J Microbiol; 2008 Feb; 54(2):103-10. PubMed ID: 18388979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi.
    Eastwood DC; Floudas D; Binder M; Majcherczyk A; Schneider P; Aerts A; Asiegbu FO; Baker SE; Barry K; Bendiksby M; Blumentritt M; Coutinho PM; Cullen D; de Vries RP; Gathman A; Goodell B; Henrissat B; Ihrmark K; Kauserud H; Kohler A; LaButti K; Lapidus A; Lavin JL; Lee YH; Lindquist E; Lilly W; Lucas S; Morin E; Murat C; Oguiza JA; Park J; Pisabarro AG; Riley R; Rosling A; Salamov A; Schmidt O; Schmutz J; Skrede I; Stenlid J; Wiebenga A; Xie X; Kües U; Hibbett DS; Hoffmeister D; Högberg N; Martin F; Grigoriev IV; Watkinson SC
    Science; 2011 Aug; 333(6043):762-5. PubMed ID: 21764756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction.
    Kirker G; Zelinka S; Gleber SC; Vine D; Finney L; Chen S; Hong YP; Uyarte O; Vogt S; Jellison J; Goodell B; Jakes JE
    Sci Rep; 2017 Jan; 7():41798. PubMed ID: 28139778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.
    Mali T; Kuuskeri J; Shah F; Lundell TK
    PLoS One; 2017; 12(9):e0185171. PubMed ID: 28953947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soil on wood-degradation and fruit body formation by parasites and saprophytes among wood-destroying basidiomycetous fungi.
    Gramss G
    Z Allg Mikrobiol; 1980; 20(10):613-7. PubMed ID: 7222742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved molecular methods to characterise Serpula lacrymans and other Basidiomycetes involved in wood decay.
    Maurice S; Le Floch G; Le Bras-Quéré M; Barbier G
    J Microbiol Methods; 2011 Feb; 84(2):208-15. PubMed ID: 21146565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-obtaining and -conserving strategies in xylotrophic basidiomycetes.
    Mazheika I; Voronko O; Kudryavtseva O; Novoselova D; Pozdnyakov L; Mukhin V; Kolomiets O; Kamzolkina O
    Mycologia; 2020; 112(3):455-473. PubMed ID: 32238121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-mediated changes in cell wall composition, morphology and ultrastructure in two wood-inhabiting fungi.
    Vesentini D; Steward D; Singh AP; Ball R; Daniel G; Franich R
    Mycol Res; 2007 Aug; 111(Pt 8):875-90. PubMed ID: 17707625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi.
    Houtman CJ; Kitin P; Houtman JC; Hammel KE; Hunt CG
    PLoS One; 2016; 11(7):e0159715. PubMed ID: 27454126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.