These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26873661)

  • 1. The recent progress in proteochemometric modelling: focusing on target descriptors, cross-term descriptors and application scope.
    Qiu T; Qiu J; Feng J; Wu D; Yang Y; Tang K; Cao Z; Zhu R
    Brief Bioinform; 2017 Jan; 18(1):125-136. PubMed ID: 26873661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteochemometric modeling of the bioactivity spectra of HIV-1 protease inhibitors by introducing protein-ligand interaction fingerprint.
    Huang Q; Jin H; Liu Q; Wu Q; Kang H; Cao Z; Zhu R
    PLoS One; 2012; 7(7):e41698. PubMed ID: 22848570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors.
    Gorostiola González M; van den Broek RL; Braun TGM; Chatzopoulou M; Jespers W; IJzerman AP; Heitman LH; van Westen GJP
    J Cheminform; 2023 Aug; 15(1):74. PubMed ID: 37641107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on human GPCR-inhibitor interactions by proteochemometric modeling.
    Gao J; Huang Q; Wu D; Zhang Q; Zhang Y; Chen T; Liu Q; Zhu R; Cao Z; He Y
    Gene; 2013 Apr; 518(1):124-31. PubMed ID: 23246697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to approach machine learning-based prediction of drug/compound-target interactions.
    Atas Guvenilir H; Doğan T
    J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised Representation Learning for Proteochemometric Modeling.
    Kim PT; Winter R; Clevert DA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features.
    Ain QU; Méndez-Lucio O; Ciriano IC; Malliavin T; van Westen GJ; Bender A
    Integr Biol (Camb); 2014 Nov; 6(11):1023-33. PubMed ID: 25255469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling.
    van Westen GJ; Bender A; Overington JP
    J Chem Biol; 2014 Oct; 7(4):119-23. PubMed ID: 25320644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.
    Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A
    J Cheminform; 2015; 7():15. PubMed ID: 25926892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing Data on Deep Learning-Based Proteochemometric Activity Classification.
    Lopez-Del Rio A; Picart-Armada S; Perera-Lluna A
    J Chem Inf Model; 2021 Apr; 61(4):1657-1669. PubMed ID: 33779173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling.
    Freyhult E; Prusis P; Lapinsh M; Wikberg JE; Moulton V; Gustafsson MG
    BMC Bioinformatics; 2005 Mar; 6():50. PubMed ID: 15760465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking.
    Shaikh N; Sharma M; Garg P
    Mol Biosyst; 2016 Mar; 12(3):1006-14. PubMed ID: 26822863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a proteochemometric-based support vector machine model for predicting bioactive molecules of tubulin receptors.
    Agyapong O; Miller WA; Wilson MD; Kwofie SK
    Mol Divers; 2022 Aug; 26(4):2231-2242. PubMed ID: 34626303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases.
    Rifaioglu AS; Atas H; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    Brief Bioinform; 2019 Sep; 20(5):1878-1912. PubMed ID: 30084866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospectively Validated Proteochemometric Models for the Prediction of Small-Molecule Binding to Bromodomain Proteins.
    Giblin KA; Hughes SJ; Boyd H; Hansson P; Bender A
    J Chem Inf Model; 2018 Sep; 58(9):1870-1888. PubMed ID: 30125501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
    Meslamani J; Rognan D
    J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical structural descriptors and mutagenicity assessment: a study with congeneric and diverse datasets
    Majumdar S; Basak SC; Lungu CN; Diudea MV; Grunwald GD
    SAR QSAR Environ Res; 2018 Aug; 29(8):579-590. PubMed ID: 30025481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteochemometric Method for pIC50 Prediction of Flaviviridae.
    Singh D; Mahadik A; Surana S; Arora P
    Biomed Res Int; 2022; 2022():7901791. PubMed ID: 36158882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteochemometric Modeling of the Interaction Space of Carbonic Anhydrase and its Inhibitors: An Assessment of Structure-based and Sequence-based Descriptors.
    Rasti B; Namazi M; Karimi-Jafari MH; Ghasemi JB
    Mol Inform; 2017 Apr; 36(4):. PubMed ID: 27860295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.