BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26874109)

  • 1. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation.
    Dausse E; Barré A; Aimé A; Groppi A; Rico A; Ainali C; Salgado G; Palau W; Daguerre E; Nikolski M; Toulmé JJ; Di Primo C
    Biosens Bioelectron; 2016 Jun; 80():418-425. PubMed ID: 26874109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of aptamers based on a protein microarray integrated with a microfluidic chip.
    Liu X; Li H; Jia W; Chen Z; Xu D
    Lab Chip; 2016 Dec; 17(1):178-185. PubMed ID: 27924973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More DNA-Aptamers for Small Drugs: A Capture-SELEX Coupled with Surface Plasmon Resonance and High-Throughput Sequencing.
    Spiga FM; Maietta P; Guiducci C
    ACS Comb Sci; 2015 May; 17(5):326-33. PubMed ID: 25875077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay.
    Win MN; Klein JS; Smolke CD
    Nucleic Acids Res; 2006; 34(19):5670-82. PubMed ID: 17038331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions.
    Di Primo C; Dausse E; Toulmé JJ
    Methods Mol Biol; 2011; 764():279-300. PubMed ID: 21748648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.
    Luo Z; Zhou H; Jiang H; Ou H; Li X; Zhang L
    Analyst; 2015 Apr; 140(8):2664-70. PubMed ID: 25728760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of Structure-Switching DNA Aptamers Binding Soluble Small Molecules and SPR Validation of Enrichment.
    Tenaglia E; Spiga FM; Guiducci C
    Methods Mol Biol; 2018; 1811():183-197. PubMed ID: 29926454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficient cell-SELEX strategy, Icell-SELEX, using isogenic cell lines for selection and counter-selection to generate RNA aptamers to cell surface proteins.
    Takahashi M; Sakota E; Nakamura Y
    Biochimie; 2016 Dec; 131():77-84. PubMed ID: 27693080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational selection of RNA aptamer against angiopoietin-2 and experimental evaluation.
    Hu WP; Kumar JV; Huang CJ; Chen WY
    Biomed Res Int; 2015; 2015():658712. PubMed ID: 25866800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection.
    Ahn JY; Jo M; Dua P; Lee DK; Kim S
    Oligonucleotides; 2011; 21(2):93-100. PubMed ID: 21413890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HAPIscreen, a method for high-throughput aptamer identification.
    Dausse E; Taouji S; Evadé L; Di Primo C; Chevet E; Toulmé JJ
    J Nanobiotechnology; 2011 Jun; 9():25. PubMed ID: 21639912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy.
    Sass S; Stöcklein WFM; Klevesath A; Hurpin J; Menger M; Hille C
    Analyst; 2019 Oct; 144(20):6064-6073. PubMed ID: 31528891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acousto-microfluidics for screening of ssDNA aptamer.
    Park JW; Lee SJ; Ren S; Lee S; Kim S; Laurell T
    Sci Rep; 2016 Jun; 6():27121. PubMed ID: 27272884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of RNA aptamers against the M. tuberculosis EsxG protein using surface plasmon resonance-based SELEX.
    Ngubane NA; Gresh L; Pym A; Rubin EJ; Khati M
    Biochem Biophys Res Commun; 2014 Jun; 449(1):114-9. PubMed ID: 24813997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Plasmon Resonance Aptamer Biosensor for Discriminating Pathogenic Bacteria
    Ahn JY; Lee KA; Lee MJ; Sekhon SS; Rhee SK; Cho SJ; Ko JH; Lee L; Han J; Kim SY; Min J; Kim YH
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1599-1605. PubMed ID: 29448635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX.
    Lin HI; Wu CC; Yang CH; Chang KW; Lee GB; Shiesh SC
    Lab Chip; 2015 Jan; 15(2):486-94. PubMed ID: 25408102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.