These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26874274)

  • 1. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules.
    Ben Messaoud G; Sánchez-González L; Probst L; Desobry S
    J Colloid Interface Sci; 2016 May; 469():120-128. PubMed ID: 26874274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil core microcapsules by inverse gelation technique.
    Martins E; Renard D; Davy J; Marquis M; Poncelet D
    J Microencapsul; 2015; 32(1):86-95. PubMed ID: 25413437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physico-chemical properties of alginate/shellac aqueous-core capsules: Influence of membrane architecture on riboflavin release.
    Ben Messaoud G; Sánchez-González L; Probst L; Jeandel C; Arab-Tehrany E; Desobry S
    Carbohydr Polym; 2016 Jun; 144():428-37. PubMed ID: 27083835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell capsules based on supramolecular hydrogels show shell-related erosion and release due to confinement.
    Guo M; Cao X; Meijer EW; Dankers PY
    Macromol Biosci; 2013 Jan; 13(1):77-83. PubMed ID: 23208698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained release of verapamil hydrochloride from sodium alginate microcapsules.
    Farhana SA; Shantakumar SM; Shyale S; Shalam M; Narasu L
    Curr Drug Deliv; 2010 Apr; 7(2):98-108. PubMed ID: 20158489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.
    Martins E; Renard D; Adiwijaya Z; Karaoglan E; Poncelet D
    J Microencapsul; 2017 Feb; 34(1):82-90. PubMed ID: 28097931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane.
    Wang JY; Jin Y; Xie R; Liu JY; Ju XJ; Meng T; Chu LY
    J Colloid Interface Sci; 2011 Jan; 353(1):61-8. PubMed ID: 20932528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation conditions and transport properties of hollow calcium alginate capsules.
    Chai Y; Mei LH; Wu GL; Lin DQ; Yao SJ
    Biotechnol Bioeng; 2004 Jul; 87(2):228-33. PubMed ID: 15236252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.
    Ben Messaoud G; Sánchez-González L; Jacquot A; Probst L; Desobry S
    J Colloid Interface Sci; 2015 Feb; 440():1-8. PubMed ID: 25460682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.
    Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N
    Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.
    Noppakundilograt S; Piboon P; Graisuwan W; Nuisin R; Kiatkamjornwong S
    Carbohydr Polym; 2015 Oct; 131():23-33. PubMed ID: 26256156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization.
    Pongjanyakul T; Puttipipatkhachorn S
    Int J Pharm; 2007 Feb; 331(1):61-71. PubMed ID: 17046185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability.
    Gåserød O; Sannes A; Skjåk-Braek G
    Biomaterials; 1999 Apr; 20(8):773-83. PubMed ID: 10353660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile method for preparing organic/inorganic hybrid capsules using amino-functional silane coupling agent in aqueous media.
    Kurayama F; Suzuki S; Oyamada T; Furusawa T; Sato M; Suzuki N
    J Colloid Interface Sci; 2010 Sep; 349(1):70-6. PubMed ID: 20621805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative diffusivity measurements for alginate-based atomized and inkjet-bioprinted artificial cells using fluorescence microscopy.
    Mobed-Miremadi M; Asi B; Parasseril J; Wong E; Tat M; Shan Y
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):196-201. PubMed ID: 22992197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.
    Kleinberger RM; Burke NA; Dalnoki-Veress K; Stöver HD
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4295-304. PubMed ID: 23910346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus.
    Leick S; Henning S; Degen P; Suter D; Rehage H
    Phys Chem Chem Phys; 2010 Mar; 12(12):2950-8. PubMed ID: 20449386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release.
    Rupenthal ID; Green CR; Alany RG
    Int J Pharm; 2011 Jun; 411(1-2):69-77. PubMed ID: 21453762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.