These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26874369)

  • 1. Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides.
    Inayathullah M; Tan A; Jeyaraj R; Lam J; Cho NJ; Liu CW; Manoukian MA; Ashkan K; Mahmoudi M; Rajadas J
    Neuropeptides; 2016 Jun; 57():71-83. PubMed ID: 26874369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
    Wetzel R
    Acc Chem Res; 2020 Oct; 53(10):2347-2357. PubMed ID: 32975927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset.
    Sugaya K; Matsubara S; Kagamihara Y; Kawata A; Hayashi H
    PLoS One; 2007 Jul; 2(7):e635. PubMed ID: 17653262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy assays for evaluating polyglutamine aggregation in solution and on surfaces.
    Burke KA; Legleiter J
    Methods Mol Biol; 2013; 1017():21-40. PubMed ID: 23719905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a recruitment and sequestration mechanism in Huntington's disease.
    Preisinger E; Jordan BM; Kazantsev A; Housman D
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1029-34. PubMed ID: 10434302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells.
    Kar K; Arduini I; Drombosky KW; van der Wel PC; Wetzel R
    J Mol Biol; 2014 Feb; 426(4):816-29. PubMed ID: 24291210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences.
    Lakhani VV; Ding F; Dokholyan NV
    PLoS Comput Biol; 2010 Apr; 6(4):e1000772. PubMed ID: 20442863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
    Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-hairpin-mediated nucleation of polyglutamine amyloid formation.
    Kar K; Hoop CL; Drombosky KW; Baker MA; Kodali R; Arduini I; van der Wel PC; Horne WS; Wetzel R
    J Mol Biol; 2013 Apr; 425(7):1183-97. PubMed ID: 23353826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart.
    Melkani GC; Trujillo AS; Ramos R; Bodmer R; Bernstein SI; Ocorr K
    PLoS Genet; 2013; 9(12):e1004024. PubMed ID: 24367279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
    Sahoo B; Arduini I; Drombosky KW; Kodali R; Sanders LH; Greenamyre JT; Wetzel R
    PLoS One; 2016; 11(6):e0155747. PubMed ID: 27271685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monomeric Huntingtin Exon 1 Has Similar Overall Structural Features for Wild-Type and Pathological Polyglutamine Lengths.
    Warner JB; Ruff KM; Tan PS; Lemke EA; Pappu RV; Lashuel HA
    J Am Chem Soc; 2017 Oct; 139(41):14456-14469. PubMed ID: 28937758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract.
    Bravo-Arredondo JM; Kegulian NC; Schmidt T; Pandey NK; Situ AJ; Ulmer TS; Langen R
    J Biol Chem; 2018 Dec; 293(51):19613-19623. PubMed ID: 30315108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the treatment of polyglutamine diseases: the modulatory role of protein context.
    Robertson AL; Bottomley SP
    Curr Med Chem; 2010; 17(27):3058-68. PubMed ID: 20629626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths.
    Priya SB; Gromiha MM
    J Cell Biochem; 2019 Jun; 120(6):10519-10529. PubMed ID: 30672003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and disaggregation of asparagine repeat-containing peptides.
    Lu X; Murphy RM
    J Pept Sci; 2014 Nov; 20(11):860-7. PubMed ID: 25044797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Length-dependent conformational transitions of polyglutamine repeats as molecular origin of fibril initiation.
    Heck BS; Doll F; Hauser K
    Biophys Chem; 2014 Jan; 185():47-57. PubMed ID: 24333917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale studies link amyloid maturity with polyglutamine diseases onset.
    Ruggeri FS; Vieweg S; Cendrowska U; Longo G; Chiki A; Lashuel HA; Dietler G
    Sci Rep; 2016 Aug; 6():31155. PubMed ID: 27499269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huntingtin aggregation and toxicity in Huntington's disease.
    Bates G
    Lancet; 2003 May; 361(9369):1642-4. PubMed ID: 12747895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.