These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26874374)

  • 21. Species delimitation in the continental forms of the genus Epicrates (Serpentes, Boidae) integrating phylogenetics and environmental niche models.
    Rivera PC; Di Cola V; Martínez JJ; Gardenal CN; Chiaraviglio M
    PLoS One; 2011; 6(9):e22199. PubMed ID: 21912634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alpha- and beta-keratins of the snake epidermis.
    Toni M; Alibardi L
    Zoology (Jena); 2007; 110(1):41-7. PubMed ID: 17169542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histology of the Skin of Three Limbless Squamates Dwelling in Mesic and Arid Environments.
    Allam AA; Daza JD; Abo-Eleneen RE
    Anat Rec (Hoboken); 2016 Jul; 299(7):979-89. PubMed ID: 27111253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dry friction of microstructured polymer surfaces inspired by snake skin.
    Baum MJ; Heepe L; Fadeeva E; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():1091-103. PubMed ID: 25161844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cutaneous and Subcutaneous Soft Tissue Tumours in Snakes: A Retrospective Study of 33 Cases.
    Dietz J; Heckers KO; Aupperle H; Pees M
    J Comp Pathol; 2016 Jul; 155(1):76-87. PubMed ID: 27324744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures.
    Filippov AE; Gorb SN
    Sci Rep; 2016 Mar; 6():23539. PubMed ID: 27005001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex.
    Alibardi L; Thompson MB
    J Morphol; 2003 Apr; 256(1):29-41. PubMed ID: 12616573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crawling without wiggling: muscular mechanisms and kinematics of rectilinear locomotion in boa constrictors.
    Newman SJ; Jayne BC
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29212845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of a molecular boundary lubricant at snakeskin surfaces.
    Baio JE; Spinner M; Jaye C; Fischer DA; Gorb SN; Weidner T
    J R Soc Interface; 2015 Dec; 12(113):20150817. PubMed ID: 26655468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presence of Porocephalus clavatus (Arthropoda: Porocephalidae) in Peruvian Boidae snakes.
    Gomez-Puerta LA; Lopez-Urbina MT; Gonzalez AE
    Vet Parasitol; 2011 Sep; 181(2-4):379-81. PubMed ID: 21531511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skin lipid structure controls water permeability in snake molts.
    Torri C; Mangoni A; Teta R; Fattorusso E; Alibardi L; Fermani S; Bonacini I; Gazzano M; Burghammer M; Fabbri D; Falini G
    J Struct Biol; 2014 Jan; 185(1):99-106. PubMed ID: 24157843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parthenogenesis in a Brazilian rainbow boa (Epicrates cenchria cenchria).
    Kinney ME; Wack RF; Grahn RA; Lyons L
    Zoo Biol; 2013 Mar; 32(2):172-6. PubMed ID: 23086743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of slope and branch structure on the locomotion of a specialized arboreal colubrid snake (Boiga irregularis).
    Jayne BC; Byrnes G
    J Exp Zool A Ecol Genet Physiol; 2015 Jun; 323(5):309-21. PubMed ID: 25845679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histological aspects of the renal sexual segment of Brazilian snakes of the Boidae family.
    Bento HJ; Ferreira A; Rosa JMA; de Campos CG; da Silva SLR; Curcio FF; Pescador CA; da Paz RCR
    Anat Histol Embryol; 2024 May; 53(3):e13049. PubMed ID: 38702901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinematics of locomotion in caecilians: effects of substrate and body shape.
    Herrel A; Measey GJ
    J Exp Zool A Ecol Genet Physiol; 2010 Jun; 313(5):301-9. PubMed ID: 20301183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning laser ophthalmoscopy and optical coherence tomography imaging of spectacular ecdysis in the corn snake (Pantherophis guttatus) and the California king snake (Lampropeltis getulus californiae).
    Cazalot G; Rival F; Linsart A; Isard PF; Tissier M; Peiffer RL; Dulaurent T
    Vet Ophthalmol; 2015 Jan; 18 Suppl 1():8-14. PubMed ID: 24787982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional consequences of convergently evolved microscopic skin features on snake locomotion.
    Rieser JM; Li TD; Tingle JL; Goldman DI; Mendelson JR
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes: Colubridae).
    Jackson K; Kley NJ; Brainerd EL
    Zoology (Jena); 2004; 107(3):191-200. PubMed ID: 16351937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fossil snakes (Squamata, Serpentes) from the tar pits of Venezuela: taxonomic, palaeoenvironmental, and palaeobiogeographical implications for the North of South America during the Cenozoic/Quaternary boundary.
    Onary S; Rincón AD; Hsiou AS
    PeerJ; 2018; 6():e5402. PubMed ID: 30128192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative morphology of the skin of Natrix tessellata (family: Colubridae) and Cerastes vipera (family: Viperidae).
    Abo-Eleneen RE; Allam AA
    Zoolog Sci; 2011 Oct; 28(10):743-8. PubMed ID: 21967222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.