These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26874438)

  • 41. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation.
    Ruan Z; Zanotti M; Zhong Y; Liao W; Ducey C; Liu Y
    Biotechnol Bioeng; 2013 Apr; 110(4):1039-49. PubMed ID: 23124976
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial lipid production from corn stover via Mortierella isabellina.
    Zhang J; Hu B
    Appl Biochem Biotechnol; 2014 Sep; 174(2):574-86. PubMed ID: 25082770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.
    Xu X; Kim JY; Oh YR; Park JM
    Bioresour Technol; 2014 Oct; 169():455-461. PubMed ID: 25084043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus.
    Christophe G; Deo JL; Kumar V; Nouaille R; Fontanille P; Larroche C
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1270-9. PubMed ID: 22203398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid production through simultaneous utilization of glucose, xylose, and L-arabinose by Pseudozyma hubeiensis: a comparative screening study.
    Tanimura A; Takashima M; Sugita T; Endoh R; Ohkuma M; Kishino S; Ogawa J; Shima J
    AMB Express; 2016 Dec; 6(1):58. PubMed ID: 27566647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.
    Yang M; Li W; Liu B; Li Q; Xing J
    Bioresour Technol; 2010 Jul; 101(13):4884-8. PubMed ID: 20061139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production.
    Ruan Z; Zanotti M; Archer S; Liao W; Liu Y
    Bioresour Technol; 2014 Jul; 163():12-7. PubMed ID: 24768942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.
    Vajpeyi S; Chandran K
    Bioresour Technol; 2015; 188():49-55. PubMed ID: 25697838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.
    Liu J; Liu JN; Yuan M; Shen ZH; Peng KM; Lu LJ; Huang XF
    Bioresour Technol; 2016 Jul; 211():548-55. PubMed ID: 27038264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach.
    Zha Y; Westerhuis JA; Muilwijk B; Overkamp KM; Nijmeijer BM; Coulier L; Smilde AK; Punt PJ
    BMC Biotechnol; 2014 Mar; 14():22. PubMed ID: 24655423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphate removal combined with acetate supplementation enhances lipid production from water hyacinth by
    Zhou W; Tang M; Zou T; Peng N; Zhao M; Gong Z
    Biotechnol Biofuels; 2019; 12():148. PubMed ID: 31223338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process.
    Gong Z; Shen H; Wang Q; Yang X; Xie H; Zhao ZK
    Biotechnol Biofuels; 2013 Mar; 6(1):36. PubMed ID: 23497564
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Process for biodiesel production from Cryptococcus curvatus.
    Thiru M; Sankh S; Rangaswamy V
    Bioresour Technol; 2011 Nov; 102(22):10436-40. PubMed ID: 21930373
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial conversion of mixed volatile fatty acids into microbial lipids by sequencing batch culture strategy.
    Liu J; Yuan M; Liu JN; Lu LJ; Peng KM; Huang XF
    Bioresour Technol; 2016 Dec; 222():75-81. PubMed ID: 27710909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency.
    Tchakouteu SS; Kalantzi O; Gardeli C; Koutinas AA; Aggelis G; Papanikolaou S
    J Appl Microbiol; 2015 Apr; 118(4):911-27. PubMed ID: 25626733
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus.
    He Q; Lokken PM; Chen S; Zhou J
    Bioresour Technol; 2009 Dec; 100(23):5955-65. PubMed ID: 19608413
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pretreatment on corn stover with low concentration of formic acid.
    Xu J; Thomsen MH; Thomsen AB
    J Microbiol Biotechnol; 2009 Aug; 19(8):845-50. PubMed ID: 19734724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel fermentation strategy for efficient xylose utilization and microbial lipid production in lignocellulosic hydrolysate.
    Yu Y; Liu S; Zhang Y; Lu M; Sha Y; Zhai R; Xu Z; Jin M
    Bioresour Technol; 2022 Oct; 361():127624. PubMed ID: 35872269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.