These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26874495)

  • 1. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals.
    Červinka C; Fulem M; Růžička K
    J Chem Phys; 2016 Feb; 144(6):064505. PubMed ID: 26874495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty.
    Červinka C; Fulem M
    J Chem Theory Comput; 2017 Jun; 13(6):2840-2850. PubMed ID: 28437618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3.
    Matus MH; Anderson KD; Camaioni DM; Autrey ST; Dixon DA
    J Phys Chem A; 2007 May; 111(20):4411-21. PubMed ID: 17444621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.
    Chen JL; Sun T; Wang YB; Wang W
    J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit correlation and basis set superposition error: the structure and energy of carbon dioxide dimer.
    McMahon JD; Lane JR
    J Chem Phys; 2011 Oct; 135(15):154309. PubMed ID: 22029315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH).
    Lo PK; Lau KC
    J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New accurate benchmark energies for large water clusters: DFT is better than expected.
    Anacker T; Friedrich J
    J Comput Chem; 2014 Mar; 35(8):634-43. PubMed ID: 24482156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit.
    Adler TB; Werner HJ
    J Chem Phys; 2011 Oct; 135(14):144117. PubMed ID: 22010708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K
    J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals.
    Lau KC; Ng CY
    J Chem Phys; 2006 Jan; 124(4):044323. PubMed ID: 16460178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.
    Marshall MS; Burns LA; Sherrill CD
    J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incremental CCSD(T)(F12)|MP2-F12-A Method to Obtain Highly Accurate CCSD(T) Energies for Large Molecules.
    Friedrich J; Walczak K
    J Chem Theory Comput; 2013 Jan; 9(1):408-17. PubMed ID: 26589043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational formulation of perturbative explicitly-correlated coupled-cluster methods.
    Torheyden M; Valeev EF
    Phys Chem Chem Phys; 2008 Jun; 10(23):3410-20. PubMed ID: 18535724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Energy-Based Fragmentation CCSD(T)-F12a Method and Application to the Relative Energies of Water Clusters (H2O)20.
    Wang K; Li W; Li S
    J Chem Theory Comput; 2014 Apr; 10(4):1546-53. PubMed ID: 26580368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-complete-basis-set extrapolation of conventional and explicitly correlated coupled-cluster energies: can the convergence to the CBS limit be diagnosed?
    Varandas AJC
    Phys Chem Chem Phys; 2021 Apr; 23(14):8717-8730. PubMed ID: 33876031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ mol
    Varandas AJC
    Phys Chem Chem Phys; 2021 Apr; 23(15):9571-9584. PubMed ID: 33885095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.