These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1318 related articles for article (PubMed ID: 26874611)
41. Two potential uses for silver nanoparticles coated with Solanum nigrum unripe fruit extract: Biofilm inhibition and photodegradation of dye effluent. Malaikozhundan B; Vijayakumar S; Vaseeharan B; Jenifer AA; Chitra P; Prabhu NM; Kannapiran E Microb Pathog; 2017 Oct; 111():316-324. PubMed ID: 28867634 [TBL] [Abstract][Full Text] [Related]
42. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Patra JK; Das G; Baek KH J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701 [TBL] [Abstract][Full Text] [Related]
43. Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Miri A; Dorani N; Darroudi M; Sarani M Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(9):46-50. PubMed ID: 27585261 [TBL] [Abstract][Full Text] [Related]
44. Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties. M K R; K S M; Nair SS; B Krishna K; T M S; K P S; K S; H S; T S Keshava P; Neeli C; Karunasagar I; K B H; Karun A Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110834. PubMed ID: 32279817 [TBL] [Abstract][Full Text] [Related]
45. Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Momin B; Rahman S; Jha N; Annapure US Bioprocess Biosyst Eng; 2019 Apr; 42(4):541-553. PubMed ID: 30604009 [TBL] [Abstract][Full Text] [Related]
46. Enhanced visible light photocatalytic inactivation of Escherichia coli using silver nanoparticles as photocatalyst. Tahir K; Nazir S; Li B; Khan AU; Khan ZU; Ahmad A; Khan QU; Zhao Y J Photochem Photobiol B; 2015 Dec; 153():261-6. PubMed ID: 26479585 [TBL] [Abstract][Full Text] [Related]
47. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Saratale RG; Shin HS; Kumar G; Benelli G; Kim DS; Saratale GD Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):211-222. PubMed ID: 28612655 [TBL] [Abstract][Full Text] [Related]
48. Plumbago auriculata leaf extract-mediated AgNPs and its activities as antioxidant, anti-TB and dye degrading agents. Jaryal N; Kaur H J Biomater Sci Polym Ed; 2017 Nov; 28(16):1847-1858. PubMed ID: 28697688 [TBL] [Abstract][Full Text] [Related]
49. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Rajkuberan C; Sudha K; Sathishkumar G; Sivaramakrishnan S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():924-30. PubMed ID: 25459618 [TBL] [Abstract][Full Text] [Related]
50. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics. Wypij M; Świecimska M; Czarnecka J; Dahm H; Rai M; Golinska P J Appl Microbiol; 2018 Jun; 124(6):1411-1424. PubMed ID: 29427473 [TBL] [Abstract][Full Text] [Related]
51. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Thapa R; Bhagat C; Shrestha P; Awal S; Dudhagara P Ann Clin Microbiol Antimicrob; 2017 May; 16(1):39. PubMed ID: 28511708 [TBL] [Abstract][Full Text] [Related]
52. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Golińska P; Wypij M; Rathod D; Tikar S; Dahm H; Rai M J Basic Microbiol; 2016 May; 56(5):541-56. PubMed ID: 27151174 [TBL] [Abstract][Full Text] [Related]
53. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Soshnikova V; Kim YJ; Singh P; Huo Y; Markus J; Ahn S; Castro-Aceituno V; Kang J; Chokkalingam M; Mathiyalagan R; Yang DC Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):108-117. PubMed ID: 28290213 [TBL] [Abstract][Full Text] [Related]
54. Green Synthesis of Silver Nanoparticles Using Huq MA Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098417 [TBL] [Abstract][Full Text] [Related]
55. Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Aslam M; Fozia F; Gul A; Ahmad I; Ullah R; Bari A; Mothana RA; Hussain H Molecules; 2021 Oct; 26(20):. PubMed ID: 34684724 [TBL] [Abstract][Full Text] [Related]
56. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Suganya KS; Govindaraju K; Kumar VG; Dhas TS; Karthick V; Singaravelu G; Elanchezhiyan M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():266-72. PubMed ID: 25769122 [TBL] [Abstract][Full Text] [Related]
57. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720 [TBL] [Abstract][Full Text] [Related]
58. Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract. Kumar DG; Achar RR; Kumar JR; Amala G; Gopalakrishnan VK; Pradeep S; Shati AA; Alfaifi MY; Elbehairi SEI; Silina E; Stupin V; Manturova N; Shivamallu C; Kollur SP BMC Complement Med Ther; 2023 May; 23(1):167. PubMed ID: 37217985 [TBL] [Abstract][Full Text] [Related]
59. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Oves M; Aslam M; Rauf MA; Qayyum S; Qari HA; Khan MS; Alam MZ; Tabrez S; Pugazhendhi A; Ismail IMI Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():429-443. PubMed ID: 29752116 [TBL] [Abstract][Full Text] [Related]
60. Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Thomas B; Vithiya BSM; Prasad TAA; Mohamed SB; Magdalane CM; Kaviyarasu K; Maaza M J Nanosci Nanotechnol; 2019 May; 19(5):2640-2648. PubMed ID: 30501761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]