These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 26874871)

  • 1. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of acute toxicity of cadmium and lead to zebrafish larvae by using a refined toxicokinetic-toxicodynamic model.
    Gao Y; Feng J; Zhu L
    Aquat Toxicol; 2015 Dec; 169():37-45. PubMed ID: 26513221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a toxicokinetic-toxicodynamic model that considers the effects of cations.
    Feng J; Gao Y; Chen M; Xu X; Huang M; Yang T; Chen N; Zhu L
    Sci Total Environ; 2018 Jun; 625():1584-1595. PubMed ID: 29996455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae.
    Gao Y; Feng J; Wang C; Zhu L
    Ecotoxicol Environ Saf; 2017 Apr; 138():146-153. PubMed ID: 28043033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting copper toxicity in zebrafish larvae under complex water chemistry conditions by using a toxicokinetic-toxicodynamic model.
    Gao Y; Feng J; Zhu J; Zhu L
    J Hazard Mater; 2020 Dec; 400():123205. PubMed ID: 32585514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity.
    Zhang Y; Feng J; Gao Y; Liu X; Qu L; Zhu L
    Environ Pollut; 2019 Jun; 249():959-968. PubMed ID: 30965548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish.
    Gao Y; Zhang Y; Feng J; Zhu L
    Environ Pollut; 2019 Aug; 251():221-229. PubMed ID: 31082606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model.
    Feng J; Gao Y; Ji Y; Zhu L
    J Hazard Mater; 2018 Mar; 345():97-106. PubMed ID: 29131987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish.
    Gao Y; Kang L; Zhang Y; Feng J; Zhu L
    Chemosphere; 2019 Apr; 220():774-782. PubMed ID: 30611076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A refined toxicokinetic model for quantifying the interaction between Cd and Cu in zebrafish larvae.
    He A; Yang L; Zhu L; Feng J
    Ecotoxicol Environ Saf; 2023 Sep; 263():115303. PubMed ID: 37515971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the Metal Mixture Toxicity with a Toxicokinetic-Toxicodynamic Model Considering the Time-Dependent Adverse Outcome Pathways.
    Yang L; Zeng J; Gao N; Zhu L; Feng J
    Environ Sci Technol; 2024 Feb; 58(8):3714-3725. PubMed ID: 38350648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Toxicokinetic and Toxicodynamic Parameters in Explaining the Sensitivity of Zebrafish Larvae to Four Metals.
    Yang L; Feng J; Gao Y; Zhu L
    Environ Sci Technol; 2021 Jul; 55(13):8965-8976. PubMed ID: 34129327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics-toxicodynamics approach.
    Gao Y; Xie Z; Zhu J; Cao H; Tan J; Feng J; Zhu L
    Ecotoxicol Environ Saf; 2021 Feb; 209():111788. PubMed ID: 33321419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes.
    Gao Y; Zhu J; He A
    Water Res; 2022 Nov; 226():119272. PubMed ID: 36283231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.
    Gao Y; Feng J; Kang L; Xu X; Zhu L
    Sci Total Environ; 2018 Jan; 610-611():442-450. PubMed ID: 28820978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model.
    Chen WQ; Wang WX; Tan QG
    Environ Pollut; 2017 Mar; 222():323-330. PubMed ID: 28024811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Risks of Cadmium Toxicity in Salinity-Fluctuating Estuarine Waters Using the Toxicokinetic-Toxicodynamic Model.
    Zhong G; Lu S; Chen R; Chen N; Tan QG
    Environ Sci Technol; 2020 Nov; 54(21):13899-13907. PubMed ID: 33059443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the survival of zebrafish larvae exposed to fluctuating pulses of lead and cadmium.
    Chen M; Gao Y; Bian X; Feng J; Ma W; Zhu L
    Chemosphere; 2019 May; 223():599-607. PubMed ID: 30798055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and toxicity of Cd, Cu and Pb mixtures in the isopod Asellus aquaticus from waterborne exposure.
    Van Ginneken M; De Jonge M; Bervoets L; Blust R
    Sci Total Environ; 2015 Dec; 537():170-9. PubMed ID: 26282750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.