These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related]
4. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
5. Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate. Sun S; Shi H; Moore S; Wang C; Ash-Shakoor A; Mather PT; Henderson JH; Ma Z ACS Appl Mater Interfaces; 2020 May; 12(19):21450-21462. PubMed ID: 32326701 [TBL] [Abstract][Full Text] [Related]
6. Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds. Nerurkar NL; Baker BM; Chen CY; Elliott DM; Mauck RL Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():787-90. PubMed ID: 17946860 [TBL] [Abstract][Full Text] [Related]
7. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. Carson D; Hnilova M; Yang X; Nemeth CL; Tsui JH; Smith AS; Jiao A; Regnier M; Murry CE; Tamerler C; Kim DH ACS Appl Mater Interfaces; 2016 Aug; 8(34):21923-32. PubMed ID: 26866596 [TBL] [Abstract][Full Text] [Related]
8. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Au HT; Cheng I; Chowdhury MF; Radisic M Biomaterials; 2007 Oct; 28(29):4277-93. PubMed ID: 17604100 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic patterning for fabrication of contractile cardiac organoids. Khademhosseini A; Eng G; Yeh J; Kucharczyk PA; Langer R; Vunjak-Novakovic G; Radisic M Biomed Microdevices; 2007 Apr; 9(2):149-57. PubMed ID: 17146728 [TBL] [Abstract][Full Text] [Related]
10. Customizable, engineered substrates for rapid screening of cellular cues. Huethorst E; Cutiongco MF; Campbell FA; Saeed A; Love R; Reynolds PM; Dalby MJ; Gadegaard N Biofabrication; 2020 Feb; 12(2):025009. PubMed ID: 31783378 [TBL] [Abstract][Full Text] [Related]
11. The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. van Spreeuwel AC; Bax NA; Bastiaens AJ; Foolen J; Loerakker S; Borochin M; van der Schaft DW; Chen CS; Baaijens FP; Bouten CV Integr Biol (Camb); 2014 Apr; 6(4):422-9. PubMed ID: 24549279 [TBL] [Abstract][Full Text] [Related]
12. Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Forte G; Pagliari S; Ebara M; Uto K; Tam JK; Romanazzo S; Escobedo-Lucea C; Romano E; Di Nardo P; Traversa E; Aoyagi T Tissue Eng Part A; 2012 Sep; 18(17-18):1837-48. PubMed ID: 22519549 [TBL] [Abstract][Full Text] [Related]
13. Temporal Impact of Substrate Anisotropy on Differentiating Cardiomyocyte Alignment and Functionality. Allen ACB; Barone E; Momtahan N; Crosby CO; Tu C; Deng W; Polansky K; Zoldan J Tissue Eng Part A; 2019 Oct; 25(19-20):1426-1437. PubMed ID: 30727863 [TBL] [Abstract][Full Text] [Related]
14. Engineered heart slices for electrophysiological and contractile studies. Blazeski A; Kostecki GM; Tung L Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457 [TBL] [Abstract][Full Text] [Related]
15. Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Smith AST; Yoo H; Yi H; Ahn EH; Lee JH; Shao G; Nagornyak E; Laflamme MA; Murry CE; Kim DH Chem Commun (Camb); 2017 Jun; 53(53):7412-7415. PubMed ID: 28634611 [TBL] [Abstract][Full Text] [Related]
16. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Wang PY; Yu J; Lin JH; Tsai WB Acta Biomater; 2011 Sep; 7(9):3285-93. PubMed ID: 21664306 [TBL] [Abstract][Full Text] [Related]
17. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Orlova Y; Magome N; Liu L; Chen Y; Agladze K Biomaterials; 2011 Aug; 32(24):5615-24. PubMed ID: 21600646 [TBL] [Abstract][Full Text] [Related]
18. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
19. Contractile cardiac grafts using a novel nanofibrous mesh. Shin M; Ishii O; Sueda T; Vacanti JP Biomaterials; 2004 Aug; 25(17):3717-23. PubMed ID: 15020147 [TBL] [Abstract][Full Text] [Related]
20. Controlling the structural and functional anisotropy of engineered cardiac tissues. Bian W; Jackman CP; Bursac N Biofabrication; 2014 Jun; 6(2):024109-24109. PubMed ID: 24717534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]