These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26874891)

  • 1. Limpets compensate sea urchin decline and enhance the stability of rocky subtidal barrens.
    Piazzi L; Bulleri F; Ceccherelli G
    Mar Environ Res; 2016 Apr; 115():49-55. PubMed ID: 26874891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient conditions determine the strength of herbivore-mediated stabilizing feedbacks in barrens.
    Illa-López L; Aubach-Masip À; Alcoverro T; Ceccherelli G; Piazzi L; Kleitou P; Santamaría J; Verdura J; Sanmartí N; Mayol E; Buñuel X; Minguito-Frutos M; Bulleri F; Boada J
    Ecol Evol; 2023 Mar; 13(3):e9929. PubMed ID: 36969938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.
    Guidetti P; Dulcić J
    Mar Environ Res; 2007 Mar; 63(2):168-84. PubMed ID: 17034843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epilithic Bacterial Assemblages on Subtidal Rocky Reefs: Variation Among Alternative Habitats at Ambient and Enhanced Nutrient Levels.
    Elsherbini J; Corzett C; Ravaglioli C; Tamburello L; Polz M; Bulleri F
    Microb Ecol; 2023 Oct; 86(3):1552-1564. PubMed ID: 36790500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced nutrient loading and herbivory do not depress the resilience of subtidal canopy forests in Mediterranean oligotrophic waters.
    Tamburello L; Ravaglioli C; Mori G; Nuccio C; Bulleri F
    Mar Environ Res; 2019 Aug; 149():7-17. PubMed ID: 31136874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.
    Kriegisch N; Reeves S; Johnson CR; Ling SD
    PLoS One; 2016; 11(12):e0168333. PubMed ID: 28030596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.
    Filbee-Dexter K; Scheibling RE
    Ecology; 2017 Jan; 98(1):253-264. PubMed ID: 28052391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascading effects of ocean acidification in a rocky subtidal community.
    Asnaghi V; Chiantore M; Mangialajo L; Gazeau F; Francour P; Alliouane S; Gattuso JP
    PLoS One; 2013; 8(4):e61978. PubMed ID: 23613994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments reveal limited top-down control of key herbivores in southern California kelp forests.
    Dunn RP; Hovel KA
    Ecology; 2019 Mar; 100(3):e02625. PubMed ID: 30648729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the herbivore role of the sea-urchin Echinometra viridis: Keys to determine the structure of communities in disturbed coral reefs.
    Sangil C; Guzman HM
    Mar Environ Res; 2016 Sep; 120():202-13. PubMed ID: 27591516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroalgal assemblage type affects predation pressure on sea urchins by altering adhesion strength.
    Gianguzza P; Bonaviri C; Milisenda G; Barcellona A; Agnetta D; Vega Fernández T; Badalamenti F
    Mar Environ Res; 2010 Jul; 70(1):82-6. PubMed ID: 20382419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The destructive date-mussel fishery and the persistence of barrens in Mediterranean rocky reefs.
    Guidetti P
    Mar Pollut Bull; 2011 Apr; 62(4):691-5. PubMed ID: 21320713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trophic cascade in a marine protected area with artificial reefs: spiny lobster predation mitigates urchin barrens.
    Kawamata S; Taino S
    Ecol Appl; 2021 Sep; 31(6):e02364. PubMed ID: 33899297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herbivore vs. nutrient control of marine primary producers: context-dependent effects.
    Burkepile DE; Hay ME
    Ecology; 2006 Dec; 87(12):3128-39. PubMed ID: 17249237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroalgal forest vs sea urchin barren: Patterns of macro-zoobenthic diversity in a large-scale Mediterranean study.
    Pinna S; Piazzi L; Ceccherelli G; Castelli A; Costa G; Curini-Galletti M; Gianguzza P; Langeneck J; Manconi R; Montefalcone M; Pipitone C; Rosso A; Bonaviri C
    Mar Environ Res; 2020 Jul; 159():104955. PubMed ID: 32250878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state.
    Ling SD
    Oecologia; 2008 Jul; 156(4):883-94. PubMed ID: 18481099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grazer removal and nutrient enrichment as recovery enhancers for overexploited rocky subtidal habitats.
    Guarnieri G; Bevilacqua S; Vignes F; Fraschetti S
    Oecologia; 2014 Jul; 175(3):959-70. PubMed ID: 24748204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conspecific cues, not starvation, mediate barren urchin response to predation risk.
    Knight CJ; Dunn RP; Long JD
    Oecologia; 2022 Aug; 199(4):859-869. PubMed ID: 35907124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs.
    Guidetti P
    Ecol Appl; 2006 Jun; 16(3):963-76. PubMed ID: 16826995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.