These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26874948)

  • 1. Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach.
    Watkins M; Sizochenko N; Rasulev B; Leszczynski J
    J Mol Model; 2016 Mar; 22(3):55. PubMed ID: 26874948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine?
    Puzyn T; Suzuki N; Haranczyk M
    Environ Sci Technol; 2008 Jul; 42(14):5189-95. PubMed ID: 18754368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR of the bioconcentration factors of non-ionic organic compounds in fish using extended topochemical atom (ETA) indices.
    Roy K; Sanyal I; Roy PP
    SAR QSAR Environ Res; 2006 Dec; 17(6):563-82. PubMed ID: 17162387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-empirical estimation of organic compound fugacity ratios at environmentally relevant system temperatures.
    van Noort PC
    Chemosphere; 2009 Jun; 76(1):16-21. PubMed ID: 19304312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme.
    Puzyn T; Haranczyk M; Suzuki N; Sakurai T
    Mol Divers; 2011 Feb; 15(1):173-88. PubMed ID: 20386980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility.
    Zhou D; Alelyunas Y; Liu R
    J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial × computational × cheminformatics (C3) approach to characterization of congeneric libraries of organic pollutants.
    Haranczyk M; Urbaszek P; Ng EG; Puzyn T
    J Chem Inf Model; 2012 Nov; 52(11):2902-9. PubMed ID: 23036090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network.
    Jiao L
    Chemosphere; 2010 Jul; 80(6):671-5. PubMed ID: 20452639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.
    Salahinejad M; Le TC; Winkler DA
    J Chem Inf Model; 2013 Jan; 53(1):223-9. PubMed ID: 23215043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of persistent organic pollutants by QSPR classification models: a comparative study.
    Papa E; Gramatica P
    J Mol Graph Model; 2008 Aug; 27(1):59-65. PubMed ID: 18387326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): potential persistent organic pollutants (POPs).
    Huang J; Yu G; Yang X; Zhang ZL
    J Environ Sci (China); 2004; 16(2):204-7. PubMed ID: 15137639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On enumeration of congeners of common persistent organic pollutants.
    Haranczyk M; Puzyn T; Ng EG
    Environ Pollut; 2010 Aug; 158(8):2786-9. PubMed ID: 20619175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures.
    Oberg T
    SAR QSAR Environ Res; 2007; 18(1-2):127-39. PubMed ID: 17365964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.
    Admire B; Lian B; Yalkowsky SH
    Chemosphere; 2015 Jan; 119():1436-1440. PubMed ID: 25022475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.
    Ivanova AA; Ivanov AA; Oliferenko AA; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2005 Jun; 16(3):231-46. PubMed ID: 15804811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of boiling points of organic compounds by QSPR tools.
    Dai YM; Zhu ZP; Cao Z; Zhang YF; Zeng JL; Li X
    J Mol Graph Model; 2013 Jul; 44():113-9. PubMed ID: 23792208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and preconcentration of persistent organic pollutants by cloud point extraction.
    Xie S; Paau MC; Li CF; Xiao D; Choi MM
    J Chromatogr A; 2010 Apr; 1217(16):2306-17. PubMed ID: 20015496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling.
    Sarfraz Iqbal M; Golsteijn L; Öberg T; Sahlin U; Papa E; Kovarich S; Huijbregts MA
    Environ Toxicol Chem; 2013 Apr; 32(5):1069-76. PubMed ID: 23436749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of a short-path distillation process to remove persistent organic pollutants in fish oil based on process parameters and quantitative structure properties relationships.
    Oterhals A; Kvamme B; Berntssen MH
    Chemosphere; 2010 Jun; 80(2):83-92. PubMed ID: 20444484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent organic pollutants and hyperuricemia in the U.S. general population.
    Lee YM; Bae SG; Lee SH; Jacobs DR; Lee DH
    Atherosclerosis; 2013 Sep; 230(1):1-5. PubMed ID: 23958244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.