These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 26874966)

  • 1. Future-proof crops: challenges and strategies for climate resilience improvement.
    Kissoudis C; van de Wiel C; Visser RG; van der Linden G
    Curr Opin Plant Biol; 2016 Apr; 30():47-56. PubMed ID: 26874966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
    Batley J; Edwards D
    Curr Opin Plant Biol; 2016 Apr; 30():78-81. PubMed ID: 26926905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits.
    Sinha P; Singh VK; Bohra A; Kumar A; Reif JC; Varshney RK
    Theor Appl Genet; 2021 Jun; 134(6):1829-1843. PubMed ID: 34014373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing designer crops for climate resilience through an integrated genomics approach.
    Mohd Saad NS; Neik TX; Thomas WJW; Amas JC; Cantila AY; Craig RJ; Edwards D; Batley J
    Curr Opin Plant Biol; 2022 Jun; 67():102220. PubMed ID: 35489163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop adaptation to climate change as a consequence of long-term breeding.
    Snowdon RJ; Wittkop B; Chen TW; Stahl A
    Theor Appl Genet; 2021 Jun; 134(6):1613-1623. PubMed ID: 33221941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the application of wild species for crop improvement in a changing climate.
    Zhang F; Batley J
    Curr Opin Plant Biol; 2020 Aug; 56():218-222. PubMed ID: 32029361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.
    Warschefsky E; Penmetsa RV; Cook DR; von Wettberg EJ
    Am J Bot; 2014 Oct; 101(10):1791-800. PubMed ID: 25326621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives.
    Rasheed A; Hao Y; Xia X; Khan A; Xu Y; Varshney RK; He Z
    Mol Plant; 2017 Aug; 10(8):1047-1064. PubMed ID: 28669791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.
    Harfouche AL; Jacobson DA; Kainer D; Romero JC; Harfouche AH; Scarascia Mugnozza G; Moshelion M; Tuskan GA; Keurentjes JJB; Altman A
    Trends Biotechnol; 2019 Nov; 37(11):1217-1235. PubMed ID: 31235329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can genomics deliver climate-change ready crops?
    Varshney RK; Singh VK; Kumar A; Powell W; Sorrells ME
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):205-211. PubMed ID: 29685733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.