BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26875146)

  • 1. The effects of decellularization and cross-linking techniques on the fatigue life and calcification of mitral valve chordae tendineae.
    Gunning GM; Murphy BP
    J Mech Behav Biomed Mater; 2016 Apr; 57():321-33. PubMed ID: 26875146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-engineered mitral valve chordae tendineae: Biomechanical and biological characterization of decellularized porcine chordae.
    Gong W; Li S; Lei D; Huang P; Yuan Z; You Z; Ye X; Zhao Q
    J Mech Behav Biomed Mater; 2016 Mar; 56():205-217. PubMed ID: 26708255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the fatigue life, dynamic creep and modes of damage accumulation within mitral valve chordae tendineae.
    Gunning GM; Murphy BP
    Acta Biomater; 2015 Sep; 24():193-200. PubMed ID: 26087111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of viscoelastic properties of suture versus porcine mitral valve chordae tendineae.
    Cochran RP; Kunzelman KS
    J Card Surg; 1991 Dec; 6(4):508-13. PubMed ID: 1815776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation.
    Ritchie J; Jimenez J; He Z; Sacks MS; Yoganathan AP
    J Biomech; 2006; 39(6):1129-35. PubMed ID: 16549101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics of Porcine Heart Valves' Strut Chordae Tendineae Investigated as a Leaflet-Chordae-Papillary Muscle Entity.
    Ross CJ; Laurence DW; Hsu MC; Baumwart R; Zhao YD; Mir A; Burkhart HM; Holzapfel GA; Wu Y; Lee CH
    Ann Biomed Eng; 2020 May; 48(5):1463-1474. PubMed ID: 32006267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical testing of glutaraldehyde cross-linked mitral valves. Part two: Elastic and viscoelastic properties of chordae tendineae.
    Constable M; Northeast R; Lawless BM; Burton HE; Gramigna V; Goh KL; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2021 Mar; 235(3):291-299. PubMed ID: 33243079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and mechanical properties of the posterior leaflet chordae tendineae in the mitral valve.
    Lodder J; Verkerke GJ; Delemarre BJ; Dodou D
    Proc Inst Mech Eng H; 2016 Feb; 230(2):77-84. PubMed ID: 26645804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone.
    Chen L; Yin FC; May-Newman K
    J Biomech Eng; 2004 Apr; 126(2):244-51. PubMed ID: 15179855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae.
    Wilcox AG; Buchan KG; Espino DM
    J Mech Behav Biomed Mater; 2014 Feb; 30():186-95. PubMed ID: 24316874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae.
    Constable M; Burton HE; Lawless BM; Gramigna V; Buchan KG; Espino DM
    Biomed Eng Online; 2018 Jul; 17(1):93. PubMed ID: 30001710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitral ring annuloplasty relieves tension of the secondary but not primary chordae tendineae in the anterior mitral leaflet.
    Nielsen SL; Lomholt M; Johansen P; Hansen SB; Andersen NT; Hasenkam JM
    J Thorac Cardiovasc Surg; 2011 Mar; 141(3):732-7. PubMed ID: 20579667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDC Cross-linking of Decellularized Tissue: A Promising Approach?
    Lehmann N; Christ T; Daugs A; Bloch O; Holinski S
    Tissue Eng Part A; 2017 Jul; 23(13-14):675-682. PubMed ID: 28457180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the mechanical properties of normal and calcified human mitral chordae tendineae.
    Casado JA; Diego S; Ferreño D; Ruiz E; Carrascal I; Méndez D; Revuelta JM; Pontón A; Icardo JM; Gutiérrez-Solana F
    J Mech Behav Biomed Mater; 2012 Sep; 13():1-13. PubMed ID: 22824585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional biomechanical and histological characterization of the mitral valve apparatus: Implications for mitral repair strategies.
    Roberts N; Morticelli L; Jin Z; Ingham E; Korossis S
    J Biomech; 2016 Aug; 49(12):2491-501. PubMed ID: 26787008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered mitral valve: morphology and biomechanics †.
    Iablonskii P; Cebotari S; Tudorache I; Granados M; Morticelli L; Goecke T; Klein N; Korossis S; Hilfiker A; Haverich A
    Interact Cardiovasc Thorac Surg; 2015 Jun; 20(6):712-9; discussion 719. PubMed ID: 25762708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of basal and marginal mitral valve chordae tendineae.
    Kunzelman KS; Cochran RP
    ASAIO Trans; 1990; 36(3):M405-8. PubMed ID: 2252712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of mitral valve chordae by directed collagen gel shrinkage.
    Shi Y; Vesely I
    Tissue Eng; 2003 Dec; 9(6):1233-42. PubMed ID: 14670111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the traction resistance of mitral valve chordae tendineae.
    Lobo FL; Takeda FR; Brandão CM; Braile DM; Jatene FB; Pomerantzeff PM
    Clinics (Sao Paulo); 2006 Oct; 61(5):395-400. PubMed ID: 17072436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.
    Theodoridis K; Müller J; Ramm R; Findeisen K; Andrée B; Korossis S; Haverich A; Hilfiker A
    Acta Biomater; 2016 Oct; 43():71-77. PubMed ID: 27422199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.