BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26875445)

  • 1. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.
    Tan Z; Yoon JM; Nielsen DR; Shanks JV; Jarboe LR
    Metab Eng; 2016 May; 35():105-113. PubMed ID: 26875445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens.
    Ahn JH; Lee JA; Bang J; Lee SY
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):555-566. PubMed ID: 29380151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates.
    Chen Y; Reinhardt M; Neris N; Kerns L; Mansell TJ; Jarboe LR
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.
    Royce LA; Yoon JM; Chen Y; Rickenbach E; Shanks JV; Jarboe LR
    Metab Eng; 2015 May; 29():180-188. PubMed ID: 25839166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF.
    Tan Z; Black W; Yoon JM; Shanks JV; Jarboe LR
    Microb Cell Fact; 2017 Feb; 16(1):38. PubMed ID: 28245829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables.
    Tan Z; Khakbaz P; Chen Y; Lombardo J; Yoon JM; Shanks JV; Klauda JB; Jarboe LR
    Metab Eng; 2017 Nov; 44():1-12. PubMed ID: 28867349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.
    Lee S; Jeon E; Jung Y; Lee J
    Appl Biochem Biotechnol; 2012 May; 167(1):24-38. PubMed ID: 22460717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The damaging effects of short chain fatty acids on Escherichia coli membranes.
    Royce LA; Liu P; Stebbins MJ; Hanson BC; Jarboe LR
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8317-27. PubMed ID: 23912117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the cis-trans-unsaturated fatty acid isomerase of Pseudomonas oleovorans GPo12.
    Pedrotta V; Witholt B
    J Bacteriol; 1999 May; 181(10):3256-61. PubMed ID: 10322030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.
    Lee S; Jung Y; Lee S; Lee J
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1606-19. PubMed ID: 23322253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism.
    Heipieper HJ; Meinhardt F; Segura A
    FEMS Microbiol Lett; 2003 Dec; 229(1):1-7. PubMed ID: 14659535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E.
    Bernal P; Segura A; Ramos JL
    Environ Microbiol; 2007 Jul; 9(7):1658-64. PubMed ID: 17564601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli.
    Lennen RM; Pfleger BF
    PLoS One; 2013; 8(1):e54031. PubMed ID: 23349781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of fatty acid cis-trans isomerization in the solvent-tolerant soil bacterium, Pseudomonas putida F1.
    Kondakova T; Cronan JE
    Environ Microbiol; 2019 May; 21(5):1659-1676. PubMed ID: 30702193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host.
    Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of medium chain length fatty alcohols from glucose in Escherichia coli.
    Youngquist JT; Schumacher MH; Rose JP; Raines TC; Politz MC; Copeland MF; Pfleger BF
    Metab Eng; 2013 Nov; 20():177-86. PubMed ID: 24141053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2.
    Kondakova T; Kumar S; Cronan JE
    Chem Phys Lipids; 2019 Aug; 222():23-35. PubMed ID: 31054954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH.
    Yao X; Liu P; Chen B; Wang X; Tao F; Lin Z; Yang X
    Microb Cell Fact; 2022 Apr; 21(1):68. PubMed ID: 35459210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories.
    Chen Y; Boggess EE; Ocasio ER; Warner A; Kerns L; Drapal V; Gossling C; Ross W; Gourse RL; Shao Z; Dickerson J; Mansell TJ; Jarboe LR
    Metab Eng; 2020 Sep; 61():120-130. PubMed ID: 32474056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.