These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26875530)

  • 1. Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)-Halide Complexes That Halogenate C-H Bonds.
    Puri M; Biswas AN; Fan R; Guo Y; Que L
    J Am Chem Soc; 2016 Mar; 138(8):2484-7. PubMed ID: 26875530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O
    Jana RD; Sheet D; Chatterjee S; Paine TK
    Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3.
    Galonić DP; Barr EW; Walsh CT; Bollinger JM; Krebs C
    Nat Chem Biol; 2007 Feb; 3(2):113-6. PubMed ID: 17220900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity.
    Srnec M; Wong SD; Matthews ML; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2016 Apr; 138(15):5110-22. PubMed ID: 27021969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-triggered chemoselective halogenation of aliphatic C-H bonds with nonheme Fe
    Pagès-Vilà N; Gamba I; Clémancey M; Latour JM; Company A; Costas M
    J Inorg Biochem; 2024 Oct; 259():112643. PubMed ID: 38924872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(IV)-oxo compounds.
    Planas O; Clémancey M; Latour JM; Company A; Costas M
    Chem Commun (Camb); 2014 Sep; 50(74):10887-90. PubMed ID: 25093575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy.
    Rohde JU; Torelli S; Shan X; Lim MH; Klinker EJ; Kaizer J; Chen K; Nam W; Que L
    J Am Chem Soc; 2004 Dec; 126(51):16750-61. PubMed ID: 15612713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the inherent selectivity for carbon radical hydroxylation
    Tao Y; Li Z; Zhang Y; Sun K; Liu Z
    RSC Adv; 2022 Mar; 12(16):9891-9897. PubMed ID: 35424943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand.
    Dantignana V; Serrano-Plana J; Draksharapu A; Magallón C; Banerjee S; Fan R; Gamba I; Guo Y; Que L; Costas M; Company A
    J Am Chem Soc; 2019 Sep; 141(38):15078-15091. PubMed ID: 31469954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo.
    Rana S; Biswas JP; Sen A; Clémancey M; Blondin G; Latour JM; Rajaraman G; Maiti D
    Chem Sci; 2018 Oct; 9(40):7843-7858. PubMed ID: 30429994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5.
    Zhang X; Wang Z; Gao J; Liu W
    Phys Chem Chem Phys; 2020 Apr; 22(16):8699-8712. PubMed ID: 32270839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes, Including Hydroxylation of n-Butane.
    Kleespies ST; Oloo WN; Mukherjee A; Que L
    Inorg Chem; 2015 Jun; 54(11):5053-64. PubMed ID: 25751610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative N-dealkylation reactions by oxoiron(IV) complexes of nonheme and heme ligands.
    Nehru K; Seo MS; Kim J; Nam W
    Inorg Chem; 2007 Jan; 46(1):293-8. PubMed ID: 17198439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds.
    Biswas AN; Puri M; Meier KK; Oloo WN; Rohde GT; Bominaar EL; Münck E; Que L
    J Am Chem Soc; 2015 Feb; 137(7):2428-31. PubMed ID: 25674662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations.
    Comba P; Wunderlich S
    Chemistry; 2010 Jun; 16(24):7293-9. PubMed ID: 20458709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial ligand effects on the geometric and electronic structures of nonheme oxoiron(IV) complexes.
    Jackson TA; Rohde JU; Seo MS; Sastri CV; DeHont R; Stubna A; Ohta T; Kitagawa T; Münck E; Nam W; Que L
    J Am Chem Soc; 2008 Sep; 130(37):12394-407. PubMed ID: 18712873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.