These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26875832)

  • 1. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield.
    Chen K; Zhou J; Chen W; Chen Q; Zhou P; Liu Y
    Nanoscale; 2016 Mar; 8(9):5146-52. PubMed ID: 26875832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.
    Suehiro S; Horita K; Yuasa M; Tanaka T; Fujita K; Ishiwata Y; Shimanoe K; Kida T
    Inorg Chem; 2015 Aug; 54(16):7840-5. PubMed ID: 26237216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry.
    van Embden J; Latham K; Duffy NW; Tachibana Y
    J Am Chem Soc; 2013 Aug; 135(31):11562-71. PubMed ID: 23876109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective synthesis of ternary copper-antimony sulfide nanocrystals.
    Xu D; Shen S; Zhang Y; Gu H; Wang Q
    Inorg Chem; 2013 Nov; 52(22):12958-62. PubMed ID: 24175875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics and mechanisms of multinary copper-based metal sulfide nanocrystals.
    Chen K; Zhou J; Chen W; Zhong Q; Yang T; Yang X; Deng C; Liu Y
    Nanoscale; 2017 Aug; 9(34):12470-12478. PubMed ID: 28815235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates.
    Makin F; Alam F; Buckingham MA; Lewis DJ
    Sci Rep; 2022 Apr; 12(1):5627. PubMed ID: 35379851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide.
    Ramasamy K; Sims H; Butler WH; Gupta A
    J Am Chem Soc; 2014 Jan; 136(4):1587-98. PubMed ID: 24400989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of CuSbS
    Behera C; Samal R; Rout CS; Dhaka RS; Sahoo G; Samal SL
    Inorg Chem; 2019 Nov; 58(22):15291-15302. PubMed ID: 31693354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption.
    Wang F; Li Q; Lin L; Peng H; Liu Z; Xu D
    J Am Chem Soc; 2015 Sep; 137(37):12006-12. PubMed ID: 26317687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates.
    Rath T; MacLachlan AJ; Brown MD; Haque SA
    J Mater Chem A Mater; 2015 Dec; 3(47):24155-24162. PubMed ID: 27019713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals.
    Xi L; Cho DY; Duchamp M; Boothroyd CB; Lek JY; Besmehn A; Waser R; Lam YM; Kardynal B
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18233-42. PubMed ID: 25252171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications.
    Ouyang J; Schuurmans C; Zhang Y; Nagelkerke R; Wu X; Kingston D; Wang ZY; Wilkinson D; Li C; Leek DM; Tao Y; Yu K
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):553-65. PubMed ID: 21244024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting.
    Ghorpade UV; Suryawanshi MP; Shin SW; Hong CW; Kim I; Moon JH; Yun JH; Kim JH; Kolekar SS
    Phys Chem Chem Phys; 2015 Aug; 17(30):19777-88. PubMed ID: 26153341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis and optical property of copper(I) sulfide nanodisks.
    Wang Y; Hu Y; Zhang Q; Ge J; Lu Z; Hou Y; Yin Y
    Inorg Chem; 2010 Jul; 49(14):6601-8. PubMed ID: 20575563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects of Colloidal Copper Chalcogenide Nanocrystals.
    van der Stam W; Berends AC; de Mello Donega C
    Chemphyschem; 2016 Mar; 17(5):559-81. PubMed ID: 26684665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper antimony sulfide thin films for visible to near infrared photodetector applications.
    Vinayakumar V; Shaji S; Avellaneda D; Aguilar-Martínez JA; Krishnan B
    RSC Adv; 2018 Aug; 8(54):31055-31065. PubMed ID: 35548774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse AgSbS2 nanocrystals: size-control strategy, large-scale synthesis, and photoelectrochemistry.
    Zhou B; Li M; Wu Y; Yang C; Zhang WH; Li C
    Chemistry; 2015 Jul; 21(31):11143-51. PubMed ID: 26095940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications.
    Wang HY; Hua XW; Wu FG; Li B; Liu P; Gu N; Wang Z; Chen Z
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7082-92. PubMed ID: 25785786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum.
    Zhang W; Zhou X; Zhong X
    Inorg Chem; 2012 Mar; 51(6):3579-87. PubMed ID: 22364175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.