BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26875879)

  • 1. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing.
    Stressler T; Leisibach D; Lutz-Wahl S; Kuhn A; Fischer L
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5401-14. PubMed ID: 26875879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity.
    Stressler T; Reichenberger K; Glück C; Leptihn S; Pfannstiel J; Swietalski P; Kuhn A; Seitl I; Fischer L
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2709-2721. PubMed ID: 29450617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. full hydrolysis of lactose in milk.
    Mateo C; Monti R; Pessela BC; Fuentes M; Torres R; Guisán JM; Fernández-Lafuente R
    Biotechnol Prog; 2004; 20(4):1259-62. PubMed ID: 15296458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the hydrolysis of lactose and other substrates by beta-D-galactosidase from Kluyveromyces lactis.
    Kim SH; Lim KP; Kim HS
    J Dairy Sci; 1997 Oct; 80(10):2264-9. PubMed ID: 9361198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell disruption optimization and covalent immobilization of beta-D-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk.
    Puri M; Gupta S; Pahuja P; Kaur A; Kanwar JR; Kennedy JF
    Appl Biochem Biotechnol; 2010 Jan; 160(1):98-108. PubMed ID: 19198767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus.
    Chen W; Chen H; Xia Y; Zhao J; Tian F; Zhang H
    J Dairy Sci; 2008 May; 91(5):1751-8. PubMed ID: 18420605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature on the lactose hydrolytic capacity of a lactase derived from Kluyveromyces lactis.
    Schneider RE; Corona E; Rosales F; Schneider FE; Rodriguez O; Pineda O
    Am J Clin Nutr; 1990 Feb; 51(2):197-201. PubMed ID: 2106255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora.
    Kim DE; Kim KH; Bae YJ; Lee JH; Jang YH; Nam SW
    Protein Expr Purif; 2005 Jan; 39(1):107-15. PubMed ID: 15596366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330.
    Kim JH; Byun DS; Godber JS; Choi JS; Choi WC; Kim HR
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):553-9. PubMed ID: 14600791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk.
    Lima PC; Gazoni I; de Carvalho AMG; Bresolin D; Cavalheiro D; de Oliveira D; Rigo E
    Food Chem; 2021 Jul; 349():129050. PubMed ID: 33556730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Beta-galactosidase activity of strains of Kluyveromyces spp. and production of ethanol from lactose].
    de Figueroa LC; Heluane H; Rintoul M; Córdoba PR
    Rev Argent Microbiol; 1990; 22(4):175-81. PubMed ID: 2129474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis.
    Verma ML; Barrow CJ; Kennedy JF; Puri M
    Int J Biol Macromol; 2012 Mar; 50(2):432-7. PubMed ID: 22230612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of beta-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate.
    Ornelas AP; Silveira WB; Sampaio FC; Passos FM
    J Appl Microbiol; 2008 Apr; 104(4):1008-13. PubMed ID: 17976174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry.
    Erich S; Kuschel B; Schwarz T; Ewert J; Böhmer N; Niehaus F; Eck J; Lutz-Wahl S; Stressler T; Fischer L
    J Biotechnol; 2015 Sep; 210():27-37. PubMed ID: 26122513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose hydrolysis using β-galactosidase from
    Carvalho CT; Lima WBB; de Medeiros FGM; Dantas JMM; de Araújo Padilha CE; Dos Santos ES; de Macêdo GR; de Sousa Júnior FC
    Prep Biochem Biotechnol; 2021; 51(7):714-722. PubMed ID: 33287624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk.
    Rodriguez-Colinas B; Fernandez-Arrojo L; Ballesteros AO; Plou FJ
    Food Chem; 2014 Feb; 145():388-94. PubMed ID: 24128493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of Kluyveromyces lactis beta-galactosidase in Escherichia coli.
    Kim CS; Ji ES; Oh DK
    Biotechnol Lett; 2003 Oct; 25(20):1769-74. PubMed ID: 14626424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Configuration of a bioreactor for milk lactose hydrolysis.
    Genari AN; Passos FV; Passos FM
    J Dairy Sci; 2003 Sep; 86(9):2783-9. PubMed ID: 14507014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Uses of microbial beta-galactosidases to reduce lactose content in milk and dairy products].
    García-Garibay M; Gómez-Ruiz L
    Rev Invest Clin; 1996 Nov; 48 Suppl():51-61. PubMed ID: 9122548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar.
    Wang X; Duan D; Xu J; Gao X; Fu X
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1353-62. PubMed ID: 26286088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.