These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26876051)

  • 1. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study.
    Chatterjee P; Sengupta N
    Mol Biosyst; 2016 Apr; 12(4):1139-50. PubMed ID: 26876051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1.
    Chatterjee P; Bagchi S; Sengupta N
    J Chem Phys; 2014 Nov; 141(20):205103. PubMed ID: 25429964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential dynamics of the cold denaturation: pressure and temperature effects in yeast frataxin.
    Espinosa YR; Grigera JR; Caffarena ER
    Proteins; 2017 Jan; 85(1):125-136. PubMed ID: 27802581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2012 Jul; 116(28):8095-104. PubMed ID: 22725973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of a lattice hydrophobic oligomer in explicit water.
    Romero-Vargas Castrillón S; Matysiak S; Stillinger FH; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2012 Aug; 116(31):9540-8. PubMed ID: 22823886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.
    Miyawaki O; Dozen M; Hirota K
    J Biosci Bioeng; 2016 Aug; 122(2):203-7. PubMed ID: 26896315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1.
    Adrover M; Martorell G; Martin SR; Urosev D; Konarev PV; Svergun DI; Daura X; Temussi P; Pastore A
    J Mol Biol; 2012 Apr; 417(5):413-24. PubMed ID: 22342930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico studies of the properties of water hydrating a small protein.
    Sinha SK; Jana M; Chakraborty K; Bandyopadhyay S
    J Chem Phys; 2014 Dec; 141(22):22D502. PubMed ID: 25494773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic hydration properties of the aβ1-42 Peptide monomer and the globular protein ubiquitin: a comparative molecular dynamics study.
    Jose JC; Khatua P; Bansal N; Sengupta N; Bandyopadhyay S
    J Phys Chem B; 2014 Oct; 118(40):11591-604. PubMed ID: 25198420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin.
    Espinosa YR; Caffarena ER; Grigera JR
    J Chem Phys; 2019 Feb; 150(7):075102. PubMed ID: 30795674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A water-explicit lattice model of heat-, cold-, and pressure-induced protein unfolding.
    Patel BA; Debenedetti PG; Stillinger FH; Rossky PJ
    Biophys J; 2007 Dec; 93(12):4116-27. PubMed ID: 17766342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic hydration processes thermal and chemical denaturation of proteins.
    Fisicaro E; Compari C; Braibanti A
    Biophys Chem; 2011 Jun; 156(1):51-67. PubMed ID: 21482019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic elements of protein cold denaturation.
    Lopez CF; Darst RK; Rossky PJ
    J Phys Chem B; 2008 May; 112(19):5961-7. PubMed ID: 18181599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein cold denaturation as seen from the solvent.
    Davidovic M; Mattea C; Qvist J; Halle B
    J Am Chem Soc; 2009 Jan; 131(3):1025-36. PubMed ID: 19115852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of water in the hydration layer of a partially unfolded structure of the protein HP-36.
    Chakraborty S; Bandyopadhyay S
    J Phys Chem B; 2008 May; 112(20):6500-7. PubMed ID: 18433159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.