BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26876347)

  • 1. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices.
    Yeh SH; Chou KH; Yang RJ
    Lab Chip; 2016 Mar; 16(5):925-31. PubMed ID: 26876347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial sample preconcentration.
    Scarff B; Escobedo C; Sinton D
    Lab Chip; 2011 Mar; 11(6):1102-9. PubMed ID: 21318202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.
    Han SI; Hwang KS; Kwak R; Lee JH
    Lab Chip; 2016 Jun; 16(12):2219-27. PubMed ID: 27199301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions.
    Yang RJ; Pu HH; Wang HL
    Biomicrofluidics; 2015 Jan; 9(1):014122. PubMed ID: 25759755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.
    Zhang P; Liu Y
    Biofabrication; 2017 Sep; 9(4):045003. PubMed ID: 28752825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of paper based microfluidic devices for size based separation and extraction applications.
    Zhong ZW; Wu RG; Wang ZP; Tan HL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Sep; 1000():41-8. PubMed ID: 26209769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane.
    Chao CC; Chiu PH; Yang RJ
    Biomed Microdevices; 2015 Apr; 17(2):25. PubMed ID: 25681049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film.
    Kim M; Jia M; Kim T
    Analyst; 2013 Mar; 138(5):1370-8. PubMed ID: 23293785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices.
    Ogawa K; Kaneta T
    Anal Sci; 2016; 32(1):31-4. PubMed ID: 26753702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sample pre-concentration by ion concentration polarization on a paraffin coated converging microfluidic paper based analytical platform.
    Perera ATK; Phan DT; Pudasaini S; Liu Y; Yang C
    Biomicrofluidics; 2020 Jan; 14(1):014103. PubMed ID: 31933713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection.
    Liu S; Su W; Ding X
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood separation on microfluidic paper-based analytical devices.
    Songjaroen T; Dungchai W; Chailapakul O; Henry CS; Laiwattanapaisal W
    Lab Chip; 2012 Sep; 12(18):3392-8. PubMed ID: 22782449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.
    Wang C; Ouyang J; Ye DK; Xu JJ; Chen HY; Xia XH
    Lab Chip; 2012 Aug; 12(15):2664-71. PubMed ID: 22648530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel.
    Cai Y; Niu JC; Liu YQ; Du XL; Wu ZY
    Anal Chim Acta; 2020 Mar; 1100():149-155. PubMed ID: 31987135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.