These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26876347)

  • 41. Nanoporous membranes enable concentration and transport in fully wet paper-based assays.
    Gong MM; Zhang P; MacDonald BD; Sinton D
    Anal Chem; 2014 Aug; 86(16):8090-7. PubMed ID: 25048114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polymersome production on a microfluidic platform using pH sensitive block copolymers.
    Brown L; McArthur SL; Wright PC; Lewis A; Battaglia G
    Lab Chip; 2010 Aug; 10(15):1922-8. PubMed ID: 20480087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Emerging applications of paper-based analytical devices for drug analysis: A review.
    Noviana E; Carrão DB; Pratiwi R; Henry CS
    Anal Chim Acta; 2020 Jun; 1116():70-90. PubMed ID: 32389191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.
    Fang X; Zhao Q; Cao H; Liu J; Guan M; Kong J
    Analyst; 2015 Nov; 140(22):7823-6. PubMed ID: 26462444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues.
    Wu J; Chen Q; Liu W; Zhang Y; Lin JM
    Lab Chip; 2012 Sep; 12(18):3474-80. PubMed ID: 22836595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pressure-assisted selective preconcentration in a straight nanochannel.
    Louër AC; Plecis A; Pallandre A; Galas JC; Estevez-Torres A; Haghiri-Gosnet AM
    Anal Chem; 2013 Aug; 85(16):7948-56. PubMed ID: 23875641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives.
    Channon RB; Nguyen MP; Henry CS; Dandy DS
    Anal Chem; 2019 Jul; 91(14):8966-8972. PubMed ID: 31276368
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection.
    Young EW; Watson MW; Srigunapalan S; Wheeler AR; Simmons CA
    Anal Chem; 2010 Feb; 82(3):808-16. PubMed ID: 20050596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Paper microfluidic-based enzyme catalyzed double microreactor.
    Ferrer IM; Valadez H; Estala L; Gomez FA
    Electrophoresis; 2014 Aug; 35(16):2417-9. PubMed ID: 24913741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Autonomous microfluidic multi-channel chip for real-time PCR with integrated liquid handling.
    Frey O; Bonneick S; Hierlemann A; Lichtenberg J
    Biomed Microdevices; 2007 Oct; 9(5):711-8. PubMed ID: 17505882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Sensing Behavior of Three-Dimensional Microfluidic Paper-Based Analytical Devices (3D-μPADs) with Evaporation-Free Enclosed Channels for Point-of-Care Testing.
    Jeon J; Park C; Ponnuvelu DV; Park S
    Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34071424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods.
    Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M
    Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 1000-fold sample focusing on paper-based microfluidic devices.
    Rosenfeld T; Bercovici M
    Lab Chip; 2014 Dec; 14(23):4465-74. PubMed ID: 25256832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equipment-Free Detection of K
    Soda Y; Citterio D; Bakker E
    ACS Sens; 2019 Mar; 4(3):670-677. PubMed ID: 30702271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein.
    Zhang D; Vangala K; Jiang D; Zou S; Pechan T
    Appl Spectrosc; 2010 Oct; 64(10):1078-85. PubMed ID: 20925976
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An innovative blood plasma separation method for a paper-based analytical device using chitosan functionalization.
    Kim D; Kim S; Kim S
    Analyst; 2020 Aug; 145(16):5491-5499. PubMed ID: 32597456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A microfluidic paper-based analytical device (μPAD) with smartphone readout for chlorpyrifos-oxon screening in human serum.
    Tsagkaris AS; Migliorelli D; Uttl L; Filippini D; Pulkrabova J; Hajslova J
    Talanta; 2021 Jan; 222():121535. PubMed ID: 33167243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design considerations for reducing sample loss in microfluidic paper-based analytical devices.
    Nguyen MP; Meredith NA; Kelly SP; Henry CS
    Anal Chim Acta; 2018 Aug; 1017():20-25. PubMed ID: 29534791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.