These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 26876494)

  • 1. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.
    Wood AW; Collar K; Li J; Brown AS; Babcock SE
    Nanotechnology; 2016 Mar; 27(11):115704. PubMed ID: 26876494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi incorporation and segregation in the MBE-grown GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires.
    Sadowski J; Kaleta A; Kryvyi S; Janaszko D; Kurowska B; Bilska M; Wojciechowski T; Domagala JZ; Sanchez AM; Kret S
    Sci Rep; 2022 Apr; 12(1):6007. PubMed ID: 35397635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates.
    Gas K; Sadowski J; Kasama T; Siusys A; Zaleszczyk W; Wojciechowski T; Morhange JF; Altintaş A; Xu HQ; Szuszkiewicz W
    Nanoscale; 2013 Aug; 5(16):7410-8. PubMed ID: 23832244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy.
    Bastiman F; Küpers H; Somaschini C; Geelhaar L
    Nanotechnology; 2016 Mar; 27(9):095601. PubMed ID: 26822408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires.
    Yu X; Wang H; Lu J; Zhao J; Misuraca J; Xiong P; von Molnár S
    Nano Lett; 2012 Oct; 12(10):5436-42. PubMed ID: 22984828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, structure and morphology of epitaxial Fe(0 0 1) films on GaAs(0 0 1)c(4 × 4).
    Ashraf T; Gusenbauer C; Stangl J; Hesser G; Koch R
    J Phys Condens Matter; 2015 Jan; 27(3):036001. PubMed ID: 25538047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of axial growth by boron incorporation in GaAs nanowires grown by self-catalyzed molecular beam epitaxy.
    Lancaster S; Groiss H; Zederbauer T; Andrews AM; MacFarland D; Schrenk W; Strasser G; Detz H
    Nanotechnology; 2019 Feb; 30(6):065602. PubMed ID: 30523852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial GaAs/Ga(As, Bi) nanowire heterostructures.
    Oliva M; Gao G; Luna E; Geelhaar L; Lewis RB
    Nanotechnology; 2019 Oct; 30(42):425601. PubMed ID: 31304919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi.
    Wu M; Luna E; Puustinen J; Guina M; Trampert A
    Nanotechnology; 2014 May; 25(20):205605. PubMed ID: 24786304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM.
    Baladés N; Sales DL; Herrera M; Tan CH; Liu Y; Richards RD; Molina SI
    Nanoscale Res Lett; 2018 Apr; 13(1):125. PubMed ID: 29696397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ga crystallization dynamics during annealing of self-assisted GaAs nanowires.
    Scarpellini D; Fedorov A; Somaschini C; Frigeri C; Bollani M; Bietti S; Nöetzel R; Sanguinetti S
    Nanotechnology; 2017 Jan; 28(4):045605. PubMed ID: 27997367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional characterization of GaAs/GaAsSb nanowires by quantitative HAADF-STEM.
    Kauko H; Grieb T; Bjørge R; Schowalter M; Munshi AM; Weman H; Rosenauer A; van Helvoort AT
    Micron; 2013 Jan; 44():254-60. PubMed ID: 22854214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires.
    Kang Y; Lin F; Tang J; Dai Q; Hou X; Meng B; Wang D; Wang L; Wei Z
    Phys Chem Chem Phys; 2023 Jan; 25(2):1248-1256. PubMed ID: 36530045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi.
    Steele JA; Lewis RA; Horvat J; Nancarrow MJ; Henini M; Fan D; Mazur YI; Schmidbauer M; Ware ME; Yu SQ; Salamo GJ
    Sci Rep; 2016 Jul; 6():28860. PubMed ID: 27377213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-x Bi x /GaAs quantum wells.
    Luna E; Wu M; Hanke M; Puustinen J; Guina M; Trampert A
    Nanotechnology; 2016 Aug; 27(32):325603. PubMed ID: 27364086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.
    Zhang Z; Shi SX; Chen PP; Lu W; Zou J
    Nanotechnology; 2015 Jan; 26(25):255601. PubMed ID: 26024290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.