These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26876515)

  • 1. A facile solution-phase synthesis of cobalt phosphide nanorods/hollow nanoparticles.
    Yang W; Huang Y; Fan J; Yu Y; Yang C; Li H
    Nanoscale; 2016 Mar; 8(9):4898-902. PubMed ID: 26876515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis and magnetic properties of iron-cobalt-phosphide nanorods.
    Yang W; Wu X; Yu Y; Yang C; Xu S; Li H
    Nanoscale; 2016 Sep; 8(36):16187-91. PubMed ID: 27602987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures.
    Ye E; Zhang SY; Lim SH; Bosman M; Zhang Z; Win KY; Han MY
    Chemistry; 2011 May; 17(21):5982-8. PubMed ID: 21491516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Controlled Synthesis of Co2P Nanostructures and Their Application in Supercapacitors.
    Chen X; Cheng M; Chen D; Wang R
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3892-900. PubMed ID: 26812678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP.
    Muthuswamy E; Kharel PR; Lawes G; Brock SL
    ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The five shades of oleylamine in a morphological transition of cobalt nanospheres to nanorods.
    Moisset A; Sodreau A; Vivien A; Salzemann C; Andreazza P; Giorgio S; Petit M; Petit C
    Nanoscale; 2021 Jul; 13(25):11289-11297. PubMed ID: 34156049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and X-ray Characterization of Cobalt Phosphide (Co2P) Nanorods for the Oxygen Reduction Reaction.
    Doan-Nguyen VV; Zhang S; Trigg EB; Agarwal R; Li J; Su D; Winey KI; Murray CB
    ACS Nano; 2015 Aug; 9(8):8108-15. PubMed ID: 26171574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents.
    Cecilia JA; Infantes-Molina A; Rodríguez-Castellón E; Jiménez-López A
    J Hazard Mater; 2013 Sep; 260():167-75. PubMed ID: 23747475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds.
    Sheng M; Fujita S; Yamaguchi S; Yamasaki J; Nakajima K; Yamazoe S; Mizugaki T; Mitsudome T
    JACS Au; 2021 Apr; 1(4):501-507. PubMed ID: 34467312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and self-assembly of monodisperse Co(x)Ni(100-x) (x=50,80) colloidal nanoparticles by homogenous nucleation.
    Sharma S; Gajbhiye NS; Ningthoujam RS
    J Colloid Interface Sci; 2010 Nov; 351(2):323-9. PubMed ID: 20728900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires.
    Qian C; Kim F; Ma L; Tsui F; Yang P; Liu J
    J Am Chem Soc; 2004 Feb; 126(4):1195-8. PubMed ID: 14746490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct chemical synthesis of L1(0)-FePtAu nanoparticles with high coercivity.
    Yu Y; Mukherjee P; Tian Y; Li XZ; Shield JE; Sellmyer DJ
    Nanoscale; 2014 Oct; 6(20):12050-5. PubMed ID: 25189100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonaqueous approach to the preparation of iron phosphide nanowires.
    She H; Chen Y; Wen R; Zhang K; Yue GH; Peng DL
    Nanoscale Res Lett; 2010 Feb; 5(4):786-90. PubMed ID: 20672078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses.
    Georgiadou V; Kokotidou C; Le Droumaguet B; Carbonnier B; Choli-Papadopoulou T; Dendrinou-Samara C
    Dalton Trans; 2014 May; 43(17):6377-88. PubMed ID: 24604256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles.
    Muthuswamy E; Savithra GH; Brock SL
    ACS Nano; 2011 Mar; 5(3):2402-11. PubMed ID: 21381759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes.
    Jourdain V; Simpson ET; Paillet M; Kasama T; Dunin-Borkowski RE; Poncharal P; Zahab A; Loiseau A; Robertson J; Bernier P
    J Phys Chem B; 2006 May; 110(20):9759-63. PubMed ID: 16706422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general strategy for synthesizing high-coercivity L1
    Lei W; Yu Y; Yang W; Feng M; Li H
    Nanoscale; 2017 Sep; 9(35):12855-12861. PubMed ID: 28849847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature ferromagnetic (Fe₁-xCox)₃BO₅ nanorods.
    He S; Zhang H; Xing H; Li K; Cui H; Yang C; Sun S; Zeng H
    Nano Lett; 2014 Jul; 14(7):3914-8. PubMed ID: 24905634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.