These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26876571)

  • 81. The dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study.
    Tobi D; Elber R; Thirumalai D
    Biopolymers; 2003 Mar; 68(3):359-69. PubMed ID: 12601795
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cosolvent effects on protein stability.
    Canchi DR; García AE
    Annu Rev Phys Chem; 2013; 64():273-93. PubMed ID: 23298246
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Trimethylamine N-oxide (TMAO) is a counteracting solute of benzyl alcohol for multi-dose formulation of immunoglobulin.
    Yoshizawa S; Oki S; Arakawa T; Shiraki K
    Int J Biol Macromol; 2018 Feb; 107(Pt A):984-989. PubMed ID: 28939518
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model.
    Hu CY; Lynch GC; Kokubo H; Pettitt BM
    Proteins; 2010 Feb; 78(3):695-704. PubMed ID: 19790265
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide.
    Reddy PM; Taha M; Venkatesu P; Kumar A; Lee MJ
    J Chem Phys; 2012 Jun; 136(23):234904. PubMed ID: 22779616
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: insights from experiments and simulations.
    Anand G; Jamadagni SN; Garde S; Belfort G
    Langmuir; 2010 Jun; 26(12):9695-702. PubMed ID: 20334401
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Molecular Interpretation of Preferential Interactions in Protein Solvation: A Solvent-Shell Perspective by Means of Minimum-Distance Distribution Functions.
    Martínez L; Shimizu S
    J Chem Theory Comput; 2017 Dec; 13(12):6358-6372. PubMed ID: 29120639
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effect of TMAO on the Structure and Phase Transition of Lipid Membranes: Potential Role of TMAO in Stabilizing Cell Membranes under Osmotic Stress.
    Maiti A; Daschakraborty S
    J Phys Chem B; 2021 Feb; 125(4):1167-1180. PubMed ID: 33481606
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Trimethylamine-N-oxide switches from stabilizing nature: A mechanistic outlook through experimental techniques and molecular dynamics simulation.
    Rani A; Jayaraj A; Jayaram B; Pannuru V
    Sci Rep; 2016 Mar; 6():23656. PubMed ID: 27025561
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A comparison of the counteracting effects of glycine betaine and TMAO on the activity of RNase A in aqueous urea solution.
    Samuelsson LM; Bedford JJ; Smith RA; Leader JP
    Comp Biochem Physiol A Mol Integr Physiol; 2005 May; 141(1):22-8. PubMed ID: 15886035
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.
    Paul S; Paul S
    J Phys Chem B; 2015 Jul; 119(30):9820-34. PubMed ID: 26115143
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Mechanism of Prominent Trimethylamine Oxide (TMAO) Accumulation in Hemodialysis Patients.
    Hai X; Landeras V; Dobre MA; DeOreo P; Meyer TW; Hostetter TH
    PLoS One; 2015; 10(12):e0143731. PubMed ID: 26650937
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Testing the paradigm that the denaturing effect of urea on protein stability is offset by methylamines at the physiological concentration ratio of 2:1 (urea:methylamines).
    Singh LR; Ali Dar T; Haque I; Anjum F; Moosavi-Movahedi AA; Ahmad F
    Biochim Biophys Acta; 2007 Dec; 1774(12):1555-62. PubMed ID: 17962089
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Modulation of the Polymerization Kinetics of α/β-Tubulin by Osmolytes and Macromolecular Crowding.
    Schummel PH; Gao M; Winter R
    Chemphyschem; 2017 Jan; 18(2):189-197. PubMed ID: 27813294
    [TBL] [Abstract][Full Text] [Related]  

  • 95. TMAO: Protecting proteins from feeling the heat.
    Boob MM; Sukenik S; Gruebele M; Pogorelov TV
    Biophys J; 2023 Apr; 122(7):1414-1422. PubMed ID: 36916005
    [TBL] [Abstract][Full Text] [Related]  

  • 96. TMAO Destabilizes RNA Secondary Structure via Direct Hydrogen Bond Interactions.
    Cho SS; Green AT; Hyeon C; Thirumalai D
    J Phys Chem B; 2023 Jan; 127(2):438-445. PubMed ID: 36602908
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effects of Trimethylamine-N-oxide on the Conformation of Peptides and its Implications for Proteins.
    Su Z; Mahmoudinobar F; Dias CL
    Phys Rev Lett; 2017 Sep; 119(10):108102. PubMed ID: 28949191
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structure and energetics of the hydrogen-bonded backbone in protein folding.
    Bolen DW; Rose GD
    Annu Rev Biochem; 2008; 77():339-62. PubMed ID: 18518824
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hydrophobic interactions in presence of osmolytes urea and trimethylamine-N-oxide.
    Sarma R; Paul S
    J Chem Phys; 2011 Nov; 135(17):174501. PubMed ID: 22070300
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Weighted persistent homology for osmolyte molecular aggregation and hydrogen-bonding network analysis.
    Anand DV; Meng Z; Xia K; Mu Y
    Sci Rep; 2020 Jun; 10(1):9685. PubMed ID: 32546801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.