BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 2687694)

  • 1. The relative contribution of resident pulmonary alveolar macrophage and inflammatory polymorphonuclear neutrophils in host resistance to pulmonary infection by Candida albicans.
    Sawyer RT; Harmsen AG
    Mycopathologia; 1989 Nov; 108(2):95-105. PubMed ID: 2687694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental pulmonary candidiasis.
    Sawyer RT
    Mycopathologia; 1990 Feb; 109(2):99-109. PubMed ID: 2183066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic phospholipase A2 contributes to innate immune defense against Candida albicans lung infection.
    Jayaraja S; Dakhama A; Yun B; Ghosh M; Lee H; Redente EF; Uhlson CL; Murphy RC; Leslie CC
    BMC Immunol; 2016 Aug; 17(1):27. PubMed ID: 27501951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary defence mechanism in mice. A comparative role of alveolar macrophages and polymorphonuclear cells against infection with Candida albicans.
    Lal S; Mitsuyama M; Miyata M; Ogata N; Amako K; Nomoto K
    J Clin Lab Immunol; 1986 Mar; 19(3):127-33. PubMed ID: 3519975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of cyclophosphamide and cortisone acetate on bronchoalveolar phagocytic cell populations.
    Pennington JE
    Am Rev Respir Dis; 1978 Aug; 118(2):319-24. PubMed ID: 697182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of tumor necrosis factor-alpha in granulocytopenic mice with pulmonary candidiasis and its modification with granulocyte colony-stimulating factor.
    Futenma M; Kawakami K; Saito A
    Microbiol Immunol; 1995; 39(6):411-7. PubMed ID: 8551973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary tissue resistance to Candida albicans in normal and in immunosuppressed mice.
    Nugent KM; Onofrio JM
    Am Rev Respir Dis; 1983 Nov; 128(5):909-14. PubMed ID: 6638681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis.
    Yano J; Noverr MC; Fidel PL
    mBio; 2017 Mar; 8(2):. PubMed ID: 28292981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of Candida albicans infections of haematogenous and mucosal origin in mice lacking the interferon gamma receptor protein.
    Londono LP; Jones HB; Vie AT; McPheat WL; Booth G; Gao XM; Dougan G
    FEMS Immunol Med Microbiol; 2000 Feb; 27(2):117-25. PubMed ID: 10640606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced clearance of Candida albicans from lung after intratracheal immunization.
    Lal S; Mitsuyama M; Amako K; Nomoto K
    J Clin Lab Immunol; 1986 Sep; 21(1):23-30. PubMed ID: 3543372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunosuppressive effect of cyclosporin A on resistance to systemic infection with Candida albicans.
    Vecchiarelli A; Cenci E; Marconi P; Rossi R; Riccardi C; Bistoni F
    J Med Microbiol; 1989 Nov; 30(3):183-92. PubMed ID: 2511321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of polymorphonuclear leukocytes in the resistance of tumor-bearing mice against Candida albicans infection.
    Okawa Y; Kobayashi M; Sakai K; Suzuki M
    Biol Pharm Bull; 2004 May; 27(5):674-8. PubMed ID: 15133243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental pulmonary candidiasis in modified rabbits. Histopathological, ultrastructural and enzyme cytochemical studies of tissue reactions.
    Nakamura T
    Mycopathologia; 1984 Apr; 85(3):129-44. PubMed ID: 6738666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice.
    Kullberg BJ; van 't Wout JW; Hoogstraten C; van Furth R
    J Infect Dis; 1993 Aug; 168(2):436-43. PubMed ID: 8335982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector function of leucocytes from susceptible and resistant mice against distinct isolates of Candida albicans.
    Hu Y; Farah CS; Ashman RB
    Immunol Cell Biol; 2006 Oct; 84(5):455-60. PubMed ID: 16869942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction and intracellular killing of Candida albicans blastospores by human polymorphonuclear leucocytes, monocytes and monocyte-derived macrophages in aerobic and anaerobic conditions.
    Thompson HL; Wilton JM
    Clin Exp Immunol; 1992 Feb; 87(2):316-21. PubMed ID: 1310454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phagocytic killing of Candida albicans by different murine effector cells.
    Baccarini M; Blasi E; Puccetti P; Bistoni F
    Sabouraudia; 1983 Dec; 21(4):271-86. PubMed ID: 6362037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-33 Coordinates Innate Defense to Systemic
    Nguyen NZN; Tran VG; Baek J; Kim Y; Youn EH; Na SW; Park SJ; Seo SK; Kwon B
    J Immunol; 2022 Feb; 208(3):660-671. PubMed ID: 35022276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity of splenic, liver and pulmonary macrophages against Candida albicans and effects of macrophage colony-stimulating factor.
    Roilides E; Lyman CA; Sein T; Gonzalez C; Walsh TJ
    Med Mycol; 2000 Apr; 38(2):161-8. PubMed ID: 10817233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans.
    Netea MG; van Tits LJ; Curfs JH; Amiot F; Meis JF; van der Meer JW; Kullberg BJ
    J Immunol; 1999 Aug; 163(3):1498-505. PubMed ID: 10415052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.