These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26877002)

  • 1. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.
    Marinopoulou A; Papastergiadis E; Raphaelides SN; Kontominas MG
    Carbohydr Polym; 2016 May; 141():106-15. PubMed ID: 26877002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis and structural characterization of amylose-Fatty Acid inclusion complexes.
    Cao Z; Woortman AJ; Rudolf P; Loos K
    Macromol Biosci; 2015 May; 15(5):691-7. PubMed ID: 25641740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the crystal structure of lotus seed amylose-long-chain fatty acid complexes prepared by high hydrostatic pressure.
    Jia X; Sun S; Chen B; Zheng B; Guo Z
    Food Res Int; 2018 Sep; 111():334-341. PubMed ID: 30007694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic light scattering and electrophoretic mobility studies of starch-fatty acid complexes in solution.
    Marinopoulou A; Raphaelides SN
    Int J Biol Macromol; 2018 Sep; 116():585-590. PubMed ID: 29772336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amylose-fatty acid inclusion complexes as examined by interfacial tension measurements.
    Marinopoulou A; Kalogianni EP; Raphaelides SN
    Colloids Surf B Biointerfaces; 2016 Jan; 137():133-7. PubMed ID: 26193774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermal properties of amylose-fatty acid complexes prepared via high hydrostatic pressure.
    Guo Z; Jia X; Miao S; Chen B; Lu X; Zheng B
    Food Chem; 2018 Oct; 264():172-179. PubMed ID: 29853363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure.
    Guo Z; Jia X; Lin X; Chen B; Sun S; Zheng B
    Food Chem Toxicol; 2019 Jun; 128():81-88. PubMed ID: 30951797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes.
    Sun S; Hua S; Hong Y; Gu Z; Cheng L; Ban X; Li Z; Li C; Zhou J
    J Sci Food Agric; 2022 Oct; 102(13):5837-5848. PubMed ID: 35426124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphism of crystalline complexes of V-amylose with fatty acids.
    Le CA; Choisnard L; Wouessidjewe D; Putaux JL
    Int J Biol Macromol; 2018 Nov; 119():555-564. PubMed ID: 30059739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic Acid.
    Lalush I; Bar H; Zakaria I; Eichler S; Shimoni E
    Biomacromolecules; 2005; 6(1):121-30. PubMed ID: 15638512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures.
    Marinopoulou A; Papastergiadis E; Raphaelides SN
    Food Res Int; 2016 Dec; 90():111-120. PubMed ID: 29195863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidation level on the inclusion capacity and solution stability of oxidized amylose in aqueous solution.
    Zhou Y; Li X; Lv Y; Shi Y; Zeng Y; Li D; Mu C
    Carbohydr Polym; 2016 Mar; 138():41-8. PubMed ID: 26794736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2014 Jan; 14(1):56-68. PubMed ID: 23996920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 D-glucoses (cyclohexaicosaose) as host.
    Nimz O; Gessler K; Usón I; Sheldrick GM; Saenger W
    Carbohydr Res; 2004 Jun; 339(8):1427-37. PubMed ID: 15178384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and comparative analysis of amylose-guest complexes prepared by microwave irradiation.
    Ryno LM; Levine Y; Iovine PM
    Carbohydr Res; 2014 Jan; 383():82-8. PubMed ID: 24333898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length.
    Godet MC; Tran V; Colonna P; Buleon A
    Int J Biol Macromol; 1995 Dec; 17(6):405-8. PubMed ID: 8789347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.
    Kenar JA; Compton DL; Little JA; Peterson SC
    Carbohydr Polym; 2016 Apr; 140():246-52. PubMed ID: 26876851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and in vitro starch digestion properties of starch-fatty acid nanocomplexes: effect of chain lengths and degree of unsaturation of fatty acids.
    Wu X; Jiang Y; Wang X; Fang Y; Lin Q; Ding Y
    J Sci Food Agric; 2022 Dec; 102(15):7239-7248. PubMed ID: 35730731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable properties of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2013 Jun; 13(6):767-76. PubMed ID: 23610062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistant structure of extruded starch: Effects of fatty acids with different chain lengths and degree of unsaturation.
    Cai C; Tian Y; Sun C; Jin Z
    Food Chem; 2022 Apr; 374():131510. PubMed ID: 34839973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.